Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry

被引:187
作者
Dupont, Christopher L. [1 ]
Yang, Song
Palenik, Brian
Bourne, Philip E.
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pharm, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Div Marine Biol Res, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
关键词
bioinorganic chemistry; evolution; fold families; structural bioinformatics;
D O I
10.1073/pnas.0605798103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Because of the rise in atmospheric oxygen 2.3 billion years ago (Gya) and the subsequent changes in oceanic redox state over the last 2.3-1 Gya, trace metal bioavailability in marine environments has changed dramatically. Although theorized to have influenced the biological usage of metals leaving discernable genomic signals, a thorough and quantitative test of this hypothesis has been lacking. Using structural bioinformatics and whole-genome sequences, the Fe-, Zn-, Mn-, and Co-binding metallomes of 23 Archaea, 233 Bacteria, and 57 Eukarya were constructed. These metallomes reveal that the overall abundances of these metal-binding structures scale to proteome size as power laws with a unique set of slopes for each Superkingdom of Life. The differences in the power describing the abundances of Fe-, Mrl Zn-, and Co-binding proteins in the proteomes of Prokaryotes and Eukaryotes are similar to the theorized changes in the abundances of these metals after the oxygenation of oceanic deep waters. This phenomenon suggests that Prokarya and Eukarya evolved in anoxic and oxic environments, respectively, a hypothesis further supported by structures and functions of Fe-binding proteins in each Superkingdom. Also observed is a proliferation in the diversity of Zn-binding protein structures involved in protein-DNA and protein-protein interactions within Eukarya, an event unlikely to occur in either an anoxic or euxinic environment where Zn concentrations would be vanishingly low. We hypothesize that these conserved trends are proteomic imprints of changes in trace metal bioavailability in the ancient ocean that highlight a major evolutionary shift in biological trace metal usage.
引用
收藏
页码:17822 / 17827
页数:6
相关论文
共 36 条
[1]   Proterozoic ocean chemistry and evolution: A bioinorganic bridge? [J].
Anbar, AD ;
Knoll, AH .
SCIENCE, 2002, 297 (5584) :1137-1142
[2]   Domain combinations in archaeal, eubacterial and eukaryotic proteomes [J].
Apic, G ;
Gough, J ;
Teichmann, SA .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 310 (02) :311-325
[3]   Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans [J].
Arnold, GL ;
Anbar, AD ;
Barling, J ;
Lyons, TW .
SCIENCE, 2004, 304 (5667) :87-90
[4]   Dating the rise of atmospheric oxygen [J].
Bekker, A ;
Holland, HD ;
Wang, PL ;
Rumble, D ;
Stein, HJ ;
Hannah, JL ;
Coetzee, LL ;
Beukes, NJ .
NATURE, 2004, 427 (6970) :117-120
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   Archean molecular fossils and the early rise of eukaryotes [J].
Brocks, JJ ;
Logan, GA ;
Buick, R ;
Summons, RE .
SCIENCE, 1999, 285 (5430) :1033-1036
[7]   A new model for Proterozoic ocean chemistry [J].
Canfield, DE .
NATURE, 1998, 396 (6710) :450-453
[8]   Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies [J].
Canfield, DE ;
Teske, A .
NATURE, 1996, 382 (6587) :127-132
[9]   The impact of structural genomics: Expectations and outcomes [J].
Chandonia, JM ;
Brenner, SE .
SCIENCE, 2006, 311 (5759) :347-351
[10]   PROTEINS - 1000 FAMILIES FOR THE MOLECULAR BIOLOGIST [J].
CHOTHIA, C .
NATURE, 1992, 357 (6379) :543-544