The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes

被引:271
作者
Schat, H
Llugany, M
Vooijs, R
Hartley-Whitaker, J
Bleeker, PM
机构
[1] Vrije Univ Amsterdam, Fac Earth & Life Sci, Dept Ecol & Physiol, NL-1081 HV Amsterdam, Netherlands
[2] Ctr Ecol & Hydrol, Grange Over Sands LA11 6JU, Cumbria, England
关键词
buthionine sulphoximine; heavy metal tolerance; Holcus lanatus; hyperaccumulator; metallophyte; phytochelatins; Silene vulgaris; Thlaspi caerulescens;
D O I
10.1093/jxb/erf107
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Using the gamma-glutamylcysteine synthetase inhibitor, L-buthionine-[S,R]-sulphoximine (BSO), the role for phytochelatins (PCs) was evaluated in Cu, Cd, Zn, As, Ni, and Co tolerance in non-metallicolous and metallicolous, hypertolerant populations of Silene vulgaris (Moench) Garcke, Thlaspi caerulescens J.&C. Presl., Holcus lanatus L., and Agrostis castellana, Boiss. et Reuter. Based on plant-internal PC-thiol to metal molar ratios, the metals' tendency to induce PC accumulation decreased in the order As/Cd/Cu > Zn > Ni/Co, and was consistently higher in non-metallicolous plants than in hypertolerant ones, except for the case of As. The sensitivities to Cu, Zn, Ni, and Co were consistently unaffected by BSO treatment, both in non-metallicolous and hypertolerant plants, suggesting that PC-based sequestration is not essential for constitutive tolerance or hypertolerance to these metals. Cd sensitivity was considerably increased by BSO, though exclusively in plants lacking Cd hypertolerance, suggesting that adaptive cadmium hypertolerance is not dependent on PC-mediated sequestration. BSO dramatically increased As sensitivity, both in non-adapted and As-hypertolerant plants, showing that PC-based sequestration is essential for both normal constitutive tolerance and adaptive hypertolerance to this metalloid. The primary function of PC synthase in plants and algae remains elusive.
引用
收藏
页码:2381 / 2392
页数:12
相关论文
共 71 条
[1]   PHYTOCHELATIN PRODUCTION IN MARINE-ALGAE .1. AN INTERSPECIES COMPARISON [J].
AHNER, BA ;
KONG, S ;
MOREL, FMM .
LIMNOLOGY AND OCEANOGRAPHY, 1995, 40 (04) :649-657
[2]   PHYTOCHELATIN PRODUCTION IN MARINE-ALGAE .2. INDUCTION BY VARIOUS METALS [J].
AHNER, BA ;
MOREL, FMM .
LIMNOLOGY AND OCEANOGRAPHY, 1995, 40 (04) :658-665
[3]   Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens [J].
Assunçao, AGL ;
Martins, PD ;
De Folter, S ;
Vooijs, R ;
Schat, H ;
Aarts, MGM .
PLANT CELL AND ENVIRONMENT, 2001, 24 (02) :217-226
[4]   DIFFERENTIAL TOXICITY OF HEAVY-METALS IS PARTLY RELATED TO A LOSS OF PREFERENTIAL EXTRAPLASMIC COMPARTMENTATION - A COMPARISON OF CD-STRESS, MO-STRESS, NI-STRESS AND ZN-STRESS [J].
BRUNE, A ;
URBACH, W ;
DIETZ, KJ .
NEW PHYTOLOGIST, 1995, 129 (03) :403-409
[5]   Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silene vulgaris [J].
Chardonnens, AN ;
Koevoets, PLM ;
van Zanten, A ;
Schat, H ;
Verkleij, JAC .
PLANT PHYSIOLOGY, 1999, 120 (03) :779-785
[6]   INCREASED ACTIVITY OF GAMMA-GLUTAMYLCYSTEINE SYNTHETASE IN TOMATO CELLS SELECTED FOR CADMIUM TOLERANCE [J].
CHEN, JJ ;
GOLDSBROUGH, PB .
PLANT PHYSIOLOGY, 1994, 106 (01) :233-239
[7]   Characterization of phytochelatin synthase from tomato [J].
Chen, JJ ;
Zhou, JM ;
Goldsbrough, PB .
PHYSIOLOGIA PLANTARUM, 1997, 101 (01) :165-172
[8]   Caenorhabditis elegans expresses a functional phytochelatin synthase [J].
Clemens, S ;
Schroeder, JI ;
Degenkolb, T .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (13) :3640-3643
[9]   Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast [J].
Clemens, S ;
Kim, EJ ;
Neumann, D ;
Schroeder, JI .
EMBO JOURNAL, 1999, 18 (12) :3325-3333
[10]   A Rule-based Approach for the Conflation of Attributed Vector Data [J].
Cobb M.A. ;
Chung M.J. ;
Foley III H. ;
Petry F.E. ;
Shaw K.B. ;
Miller H.V. .
GeoInformatica, 1998, 2 (1) :7-35