CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq

被引:786
作者
Hashimshony, Tamar [1 ]
Senderovich, Naftalie [1 ]
Avital, Gal [1 ]
Klochendler, Agnes [2 ]
de Leeuw, Yaron [1 ]
Anavy, Leon [1 ]
Gennert, Dave [3 ,4 ,5 ]
Li, Shuqiang [6 ]
Livak, Kenneth J. [6 ]
Rozenblatt-Rosen, Orit [3 ,4 ,5 ]
Dor, Yuval [2 ]
Regev, Aviv [3 ,4 ,5 ]
Yanai, Itai [1 ]
机构
[1] Technion Israel Inst Technol, Dept Biol, IL-32000 Haifa, Israel
[2] Hebrew Univ Jerusalem, Hadassah Med Sch, Inst Med Res Israel Canada, Dept Dev Biol & Canc Res, IL-91010 Jerusalem, Israel
[3] Broad Inst Harvard & MIT, Klarman Cell Observ, Cambridge, MA 02142 USA
[4] MIT, Dept Biol, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] MIT, Howard Hughes Med Inst, Dept Biol, Cambridge, MA 02140 USA
[6] Fluidigm Corp, 7000 Shoreline Court,Suite 100, San Francisco, CA 94080 USA
来源
GENOME BIOLOGY | 2016年 / 17卷
基金
以色列科学基金会; 欧洲研究理事会;
关键词
TRANSCRIPTOMICS;
D O I
10.1186/s13059-016-0938-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell transcriptomics requires a method that is sensitive, accurate, and reproducible. Here, we present CEL-Seq2, a modified version of our CEL-Seq method, with threefold higher sensitivity, lower costs, and less hands-on time. We implemented CEL-Seq2 on Fluidigm's C1 system, providing its first single-cell, on-chip barcoding method, and we detected gene expression changes accompanying the progression through the cell cycle in mouse fibroblast cells. We also compare with Smart-Seq to demonstrate CEL-Seq2's increased sensitivity relative to other available methods. Collectively, the improvements make CEL-Seq2 uniquely suited to single-cell RNA-Seq analysis in terms of economics, resolution, and ease of use.
引用
收藏
页数:7
相关论文
共 19 条
[1]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[2]   The external RNA controls consortium: a progress report [J].
Baker, SC ;
Bauer, SR ;
Beyer, RP ;
Brenton, JD ;
Bromley, B ;
Burrill, J ;
Causton, H ;
Conley, MP ;
Elespuru, R ;
Fero, M ;
Foy, C ;
Fuscoe, J ;
Gao, XL ;
Gerhold, DL ;
Gilles, P ;
Goodsaid, F ;
Guo, X ;
Hackett, J ;
Hockett, RD ;
Ikonomi, P ;
Irizarry, RA ;
Kawasaki, ES ;
Kaysser-Kranich, T ;
Kerr, K ;
Kiser, G ;
Koch, WH ;
Lee, KY ;
Liu, CM ;
Liu, ZL ;
Lucas, A ;
Manohar, CF ;
Miyada, G ;
Modrusan, Z ;
Parkes, H ;
Puri, RK ;
Reid, L ;
Ryder, TB ;
Salit, M ;
Samaha, RR ;
Scherf, U ;
Sendera, TJ ;
Setterquist, RA ;
Shi, LM ;
Shippy, R ;
Soriano, JV ;
Wagar, EA ;
Warrington, JA ;
Williams, M ;
Wilmer, F ;
Wilson, M .
NATURE METHODS, 2005, 2 (10) :731-734
[3]   Design and Analysis of Single-Cell Sequencing Experiments [J].
Gruen, Dominic ;
van Oudenaarden, Alexander .
CELL, 2015, 163 (04) :799-810
[4]  
Grün D, 2014, NAT METHODS, V11, P637, DOI [10.1038/NMETH.2930, 10.1038/nmeth.2930]
[5]   CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification [J].
Hashimshony, Tamar ;
Wagner, Florian ;
Sher, Noa ;
Yanai, Itai .
CELL REPORTS, 2012, 2 (03) :666-673
[6]   Measurement of the number of molecules of a single mRNA species in a complex mRNA preparation [J].
Hug, H ;
Schuler, R .
JOURNAL OF THEORETICAL BIOLOGY, 2003, 221 (04) :615-624
[7]   Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq [J].
Islam, Saiful ;
Kjallquist, Una ;
Moliner, Annalena ;
Zajac, Pawel ;
Fan, Jian-Bing ;
Lonnerberg, Peter ;
Linnarsson, Sten .
GENOME RESEARCH, 2011, 21 (07) :1160-1167
[8]  
Jaitin D A., Science
[9]  
Kivioja T, 2012, NAT METHODS, V9, P72, DOI [10.1038/NMETH.1778, 10.1038/nmeth.1778]
[10]   Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells [J].
Klein, Allon M. ;
Mazutis, Linas ;
Akartuna, Ilke ;
Tallapragada, Naren ;
Veres, Adrian ;
Li, Victor ;
Peshkin, Leonid ;
Weitz, David A. ;
Kirschner, Marc W. .
CELL, 2015, 161 (05) :1187-1201