Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes

被引:195
作者
Aliev, Ali E. [1 ]
Lima, Marcio H. [1 ]
Silverman, Edward M. [2 ]
Baughman, Ray H. [1 ]
机构
[1] Univ Texas Dallas, Alan G MacDiarmid NanoTech Inst, Richardson, TX 75083 USA
[2] Northrop Grumman Space Technol, Redondo Beach, CA 90278 USA
关键词
TRANSPORT; NANOMECHANICS;
D O I
10.1088/0957-4484/21/3/035709
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The extremely high thermal conductivity of individual carbon nanotubes, predicted theoretically and observed experimentally, has not yet been achieved for large nanotube assemblies. Resistances at tube-tube interconnections and tube-electrode interfaces have been considered the main obstacles for effective electronic and heat transport. Here we show that, even for infinitely long and perfect nanotubes with well-designed tube-electrode interfaces, excessive radial heat radiation from nanotube surfaces and quenching of phonon modes in large bundles are additional processes that substantially reduce thermal transport along nanotubes. Equivalent circuit simulations and an experimental self-heating 3 omega technique were used to determine the peculiarities of anisotropic heat flow and thermal conductivity of single MWNTs, bundled MWNTs and aligned, free-standing MWNT sheets. The thermal conductivity of individual MWNTs grown by chemical vapor deposition and normalized to the density of graphite is much lower (kappa(MWNT) = 600 +/- 100 W m(-1) K-1) than theoretically predicted. Coupling within MWNT bundles decreases this thermal conductivity to 150 W m(-1) K-1. Further decrease of the effective thermal conductivity in MWNT sheets to 50 W m(-1) K-1 comes from tube-tube interconnections and sheet imperfections like dangling fiber ends, loops and misalignment of nanotubes. Optimal structures for enhancing thermal conductivity are discussed.
引用
收藏
页数:11
相关论文
共 26 条
[1]   Multiwalled carbon nanotubes as building blocks in nanoelectronics [J].
Ahlskog, M ;
Hakonen, P ;
Paalanen, M ;
Roschier, L ;
Tarkiainen, R .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2001, 124 (1-2) :335-352
[2]  
Ajayan PM, 2001, TOP APPL PHYS, V80, P391
[3]   Thermal transport in MWCNT sheets and yarns [J].
Aliev, Ali E. ;
Guthy, Csaba ;
Zhang, Mei ;
Fang, Shaoli ;
Zakhidov, Anvar A. ;
Fischer, John E. ;
Baughman, Ray H. .
CARBON, 2007, 45 (15) :2880-2888
[4]   Carbon nanotubes: nanomechanics, manipulation, and electronic devices [J].
Avouris, P ;
Hertel, T ;
Martel, R ;
Schmidt, T ;
Shea, HR ;
Walkup, RE .
APPLIED SURFACE SCIENCE, 1999, 141 (3-4) :201-209
[5]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[6]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[7]   DETONATIONS AT NANOMETER RESOLUTION USING MOLECULAR-DYNAMICS [J].
BRENNER, DW ;
ROBERTSON, DH ;
ELERT, ML ;
WHITE, CT .
PHYSICAL REVIEW LETTERS, 1993, 70 (14) :2174-2177
[8]   Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process [J].
Cao, JX ;
Yan, XH ;
Xiao, Y ;
Ding, JW .
PHYSICAL REVIEW B, 2004, 69 (07)
[9]   Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method -: art. no. 013108 [J].
Choi, TY ;
Poulikakos, D ;
Tharian, J ;
Sennhauser, U .
APPLIED PHYSICS LETTERS, 2005, 87 (01)
[10]  
GHOSH S, 2009, P MRS 2009 SPRING M