Mitochondrial dysfunction in atherosclerosis

被引:607
作者
Madamanchi, Nageswara R. [1 ]
Runge, Marschall S. [1 ]
机构
[1] Univ N Carolina, Dept Med, Carolina Caridiovasc Biol Ctr, Chapel Hill, NC 27599 USA
关键词
oxidative stress; DNA damage; obesity; diabetes; aging;
D O I
10.1161/01.RES.0000258450.44413.96
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Increased production of reactive oxygen species in mitochondria, accumulation of mitochondrial DNA damage, and progressive respiratory chain dysfunction are associated with atherosclerosis or cardiomyopathy in human investigations and animal models of oxidative stress. Moreover, major precursors of atherosclerosis-hypercholesterolemia, hyperglycemia, hypertriglyceridemia, and even the process of aging-all induce mitochondrial dysfunction. Chronic overproduction of mitochondrial reactive oxygen species leads to destruction of pancreatic beta-cells, increased oxidation of low-density lipoprotein and dysfunction of endothelial cells-factors that promote atherosclerosis. An additional mechanism by which impaired mitochondrial integrity predisposes to clinical manifestations of vascular diseases relates to vascular cell growth. Mitochondrial function is required for normal vascular cell growth and function. Mitochondrial dysfunction can result in apoptosis, favoring plaque rupture. Subclinical episodes of plaque rupture accelerate the progression of hemodynamically significant atherosclerotic lesions. Flow-limiting plaque rupture can result in myocardial infarction, stroke, and ischemic/reperfusion damage. Much of what is known on reactive oxygen species generation and modulation comes from studies in cultured cells and animal models. In this review, we have focused on linking this large body of literature to the clinical syndromes that predispose humans to atherosclerosis and its complications.
引用
收藏
页码:460 / 473
页数:14
相关论文
共 208 条
[1]  
Alcouffe J, 1999, J LIPID RES, V40, P1200
[2]   Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels as a central target for the development of human AD and AD-Like pathology in aged transgenic mice [J].
Aliev, G ;
Seyidova, D ;
Neal, ML ;
Shi, J ;
Lamb, BT ;
Siedlak, SL ;
Vinters, HV ;
Head, E ;
Perry, G ;
Lamanna, JC ;
Friedland, RP ;
Cotman, CW .
ALZHEIMER'S DISEASE: VASCULAR ETIOLOGY AND PATHOLOGY, 2002, 977 :45-64
[3]   Oxygen dependence of mitochondrial nitric oxide synthase activity [J].
Alvarez, S ;
Valdez, LB ;
Zaobornyj, T ;
Boveris, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 305 (03) :771-775
[4]   Delaying the mitochondrial decay of aging [J].
Ames, BN .
STRATEGIES FOR ENGINEERED NEGLIGIBLE SENESCENCE: WHY GENUINE CONTROL OF AGING MAY BE FORESEEABLE, 2004, 1019 :406-411
[5]   CARDIAC INVOLVEMENT IN MITOCHONDRIAL DISEASES - A STUDY ON 17 PATIENTS WITH DOCUMENTED MITOCHONDRIAL-DNA DEFECTS [J].
ANAN, R ;
NAKAGAWA, M ;
MIYATA, M ;
HIGUCHI, I ;
NAKAO, S ;
SUEHARA, M ;
OSAME, M ;
TANAKA, H .
CIRCULATION, 1995, 91 (04) :955-961
[6]   Coronary atherosclerosis and somatic mutations: an overview of the contributive factors for oxidative DNA damage [J].
Andreassi, MG .
MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2003, 543 (01) :67-86
[7]   Free fatty acids are associated with obesity, insulin resistance, and atherosclerosis in renal transplant recipients [J].
Armstrong, KA ;
Hiremagalur, B ;
Haluska, BA ;
Campbell, SB ;
Hawley, CM ;
Marks, L ;
Prins, J ;
Johnson, DW ;
Isbel, NM .
TRANSPLANTATION, 2005, 80 (07) :937-944
[8]   Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production [J].
Arsenijevic, D ;
Onuma, H ;
Pecqueur, C ;
Raimbault, S ;
Manning, BS ;
Miroux, B ;
Couplan, E ;
Alves-Guerra, MC ;
Goubern, M ;
Surwit, R ;
Bouillaud, F ;
Richard, D ;
Collins, S ;
Ricquier, D .
NATURE GENETICS, 2000, 26 (04) :435-439
[9]   Postischemic recovery of contractile function is impaired in SOD2± but not SOD1± mouse hearts [J].
Asimakis, GK ;
Lick, S ;
Patterson, C .
CIRCULATION, 2002, 105 (08) :981-986
[10]   Oxidized LDL promotes peroxide-mediated mitochondrial dysfunction and cell death in human macrophages - A caspase-3-independent pathway [J].
Asmis, R ;
Begley, JG .
CIRCULATION RESEARCH, 2003, 92 (01) :E20-E29