Heme is involved in microRNA processing

被引:233
作者
Faller, Michiel
Matsunaga, Michio
Yin, Sheng
Loo, Joseph A.
Guo, Feng [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Mol Biol, Dept Chem & Biochem, Los Angeles, CA 90095 USA
关键词
D O I
10.1038/nsmb1182
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs ( miRNAs) regulate the expression of a large number of protein-coding genes. Their primary transcripts (pri-miRNAs) have to undergo multiple processing steps to reach the functional form. Little is known about how the processing of miRNAs is modulated. Here we show that the RNA-binding protein DiGeorge critical region-8 (DGCR8), which is essential for the first processing step, is a heme-binding protein. The association with heme promotes dimerization of DGCR8. The heme-bound DGCR8 dimer seems to trimerize upon binding pri-miRNAs and is active in triggering pri-miRNA cleavage, whereas the heme-free monomer is much less active. A heme-binding region of DGCR8 inhibits the pri-miRNA-processing activity of the monomer. This putative autoinhibition is overcome by heme. Our finding that heme is involved in pri-miRNA processing suggests that the gene-regulation network of miRNAs and signal-transduction pathways involving heme might be connected.
引用
收藏
页码:23 / 29
页数:7
相关论文
共 50 条
[1]   A role for heme in Alzheimer's disease:: Heme binds amyloid β and has altered metabolism [J].
Atamna, H ;
Frey, WH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (30) :11153-11158
[2]   Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging [J].
Atamna, H ;
Killilea, DW ;
Killilea, AN ;
Ames, BN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (23) :14807-14812
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[5]   bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila [J].
Brennecke, J ;
Hipfner, DR ;
Stark, A ;
Russell, RB ;
Cohen, SM .
CELL, 2003, 113 (01) :25-36
[6]   ARC REPRESSOR IS TETRAMERIC WHEN BOUND TO OPERATOR DNA [J].
BROWN, BM ;
BOWIE, JU ;
SAUER, RT .
BIOCHEMISTRY, 1990, 29 (51) :11189-11195
[7]   Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs [J].
Cai, XZ ;
Hagedorn, CH ;
Cullen, BR .
RNA, 2004, 10 (12) :1957-1966
[8]   MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode [J].
Chang, S ;
Johnston, RJ ;
Frokjær-Jensen, C ;
Lockery, S ;
Hobert, O .
NATURE, 2004, 430 (7001) :785-789
[9]   MicroRNAs modulate hematopoietic lineage differentiation [J].
Chen, CZ ;
Li, L ;
Lodish, HF ;
Bartel, DP .
SCIENCE, 2004, 303 (5654) :83-86
[10]   miR-15 and miR-16 induce apoptosis by targeting BCL2 [J].
Cimmino, A ;
Calin, GA ;
Fabbri, M ;
Iorio, MV ;
Ferracin, M ;
Shimizu, M ;
Wojcik, SE ;
Aqeilan, RI ;
Zupo, S ;
Dono, M ;
Rassenti, L ;
Alder, H ;
Volinia, S ;
Liu, CG ;
Kipps, TJ ;
Negrini, M ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (39) :13944-13949