Applications of genome-scale metabolic reconstructions

被引:578
作者
Oberhardt, Matthew A. [1 ]
Palsson, Bernhard O. [2 ]
Papin, Jason A. [1 ]
机构
[1] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22908 USA
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
computational biology; metabolic model; modeling; network; systems biology; FLUX BALANCE ANALYSIS; HAEMOPHILUS-INFLUENZAE RD; CONSTRAINT-BASED ANALYSIS; NETWORK-BASED PREDICTION; SACCHAROMYCES-CEREVISIAE; STAPHYLOCOCCUS-AUREUS; MYCOBACTERIUM-TUBERCULOSIS; SYSTEMS-ANALYSIS; TRANSCRIPTIONAL REGULATION; GEOBACTER-SULFURREDUCENS;
D O I
10.1038/msb.2009.77
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The availability and utility of genome-scale metabolic reconstructions have exploded since the first genome-scale reconstruction was published a decade ago. Reconstructions have now been built for a wide variety of organisms, and have been used toward five major ends: (1) contextualization of high-throughput data, (2) guidance of metabolic engineering, (3) directing hypothesis-driven discovery, (4) interrogation of multi-species relationships, and (5) network property discovery. In this review, we examine the many uses and future directions of genome-scale metabolic reconstructions, and we highlight trends and opportunities in the field that will make the greatest impact on many fields of biology. Molecular Systems Biology 5: 320; published online 3 November 2009; doi: 10.1038/msb.2009.77
引用
收藏
页数:15
相关论文
共 162 条
[41]   Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor [J].
Fernandez, Nuria ;
Diaz, Emiliano Enrique ;
Amils, Ricardo ;
Sanz, Jose L. .
MICROBIAL ECOLOGY, 2008, 56 (01) :121-132
[42]   Biofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutans [J].
Filoche, SK ;
Anderson, SA ;
Sissons, CH .
ORAL MICROBIOLOGY AND IMMUNOLOGY, 2004, 19 (05) :322-326
[43]   In silico design and adaptive evolution of Escherichia coli for production of lactic acid [J].
Fong, SS ;
Burgard, AP ;
Herring, CD ;
Knight, EM ;
Blattner, FR ;
Maranas, CD ;
Palsson, BO .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 91 (05) :643-648
[44]   Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes [J].
Fong, SS ;
Palsson, BO .
NATURE GENETICS, 2004, 36 (10) :1056-1058
[45]   Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network [J].
Förster, J ;
Famili, I ;
Fu, P ;
Palsson, BO ;
Nielsen, J .
GENOME RESEARCH, 2003, 13 (02) :244-253
[46]   ExPASy: the proteomics server for in-depth protein knowledge and analysis [J].
Gasteiger, E ;
Gattiker, A ;
Hoogland, C ;
Ivanyi, I ;
Appel, RD ;
Bairoch, A .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3784-3788
[47]  
Ghosh Preetam, 2007, Comput Syst Bioinformatics Conf, V6, P121, DOI 10.1142/9781860948732_0016
[48]   Predicting biological system objectives de novo from internal state measurements [J].
Gianchandani, Erwin P. ;
Oberhardt, Matthew A. ;
Burgard, Anthony P. ;
Maranas, Costas D. ;
Papin, Jason A. .
BMC BIOINFORMATICS, 2008, 9 (1)
[49]   Reconstruction, modeling & analysis of Halobacterium salinarum R-1 metabolism [J].
Gonzalez, Orland ;
Gronau, Susanne ;
Falb, Michaela ;
Pfeiffer, Friedhelm ;
Mendoza, Eduardo ;
Zimmer, Ralf ;
Oesterhelt, Dieter .
MOLECULAR BIOSYSTEMS, 2008, 4 (02) :148-159
[50]   A network-based method for target selection in metabolic networks [J].
Guimera, R. ;
Sales-Pardo, M. ;
Amaral, L. A. N. .
BIOINFORMATICS, 2007, 23 (13) :1616-1622