Construction of hybrid peptide synthetases by module and domain fusions

被引:141
作者
Mootz, HD [1 ]
Schwarzer, D [1 ]
Marahiel, MA [1 ]
机构
[1] Univ Marburg, Fachbereich Chem Biochem, D-35032 Marburg, Germany
关键词
hybrid enzyme; module exchange;
D O I
10.1073/pnas.100075897
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonribosomal peptide synthetases are modular enzymes that assemble peptides of diverse structures and important biological activities. Their modular organization provides a great potential for the rational design of novel compounds by recombination of the biosynthetic genes, Here we describe the extension of a dimodular system to trimodular ones based on whole-module fusion. The recombinant hybrid enzymes were purified to monitor product assembly in vitro. We started from the first two modules of tyrocidine synthetase, which catalyze the formation of the dipeptide DPhe-Pro, to construct such hybrid systems. Fusion of the second, proline-specific module with the ninth and tenth modules of the tyrocidine synthetases, specific for ornithine and leucine, respectively, resulted in dimodular hybrid enzymes exhibiting the combined substrate specificities. The thioesterase domain was fused to the terminal module. Upon incubation of these dimodular enzymes with the first tyrocidine module, TycA, incorporating DPhe, the predicted tripeptides DPhe-Pro-Orn and oPhe-Pro-Leu were obtained at rates of 0.15 min(-1) and 2.1 min(-1). The internal thioesterase domain was necessary and sufficient to release the products from the hybrid enzymes and thereby facilitate a catalytic turnover. Our approach of whole-module fusion is based on an improved definition of the fusion sites and overcomes the recently discovered editing function of the intrinsic condensation domains. The stepwise construction of hybrid peptide synthetases from catalytic subunits reinforces the inherent potential for the synthesis of novel, designed peptides.
引用
收藏
页码:5848 / 5853
页数:6
相关论文
共 28 条
[1]   SEQUENCE AROUND THE 159-DEGREES REGION OF THE BACILLUS-SUBTILIS GENOME - THE PKSX LOCUS SPANS 33-CENTER-DOT-6 KB [J].
ALBERTINI, AM ;
CARAMORI, T ;
SCOFFONE, F ;
SCOTTI, C ;
GALIZZI, A .
MICROBIOLOGY-SGM, 1995, 141 :299-309
[2]   Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis [J].
Belshaw, PJ ;
Walsh, CT ;
Stachelhaus, T .
SCIENCE, 1999, 284 (5413) :486-489
[3]   Biochemistry - Harnessing the biosynthetic code: Combinations, permutations, and mutations [J].
Cane, DE ;
Walsh, CT ;
Khosla, C .
SCIENCE, 1998, 282 (5386) :63-68
[4]   Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S [J].
Conti, E ;
Stachelhaus, T ;
Marahiel, MA ;
Brick, P .
EMBO JOURNAL, 1997, 16 (14) :4174-4183
[5]   Engineering of peptide synthetases - Key role of the thioesterase-like domain for efficient production of recombinant peptides [J].
deFerra, F ;
Rodriguez, F ;
Tortora, O ;
Tosi, C ;
Grandi, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (40) :25304-25309
[6]   Probing the domain structure and ligand-induced conformational changes by limited proteolysis of tyrocidine synthetase 1 [J].
Dieckmann, R ;
Pavela-Vrancic, M ;
von Döhren, H ;
Kleinkauf, H .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 288 (01) :129-140
[7]   BIOSYNTHESIS OF TYROCIDINE BY A CELL-FREE ENZYME SYSTEM OF BACILLUS BREVIS ATCC 8185 .2. AMINO ACID SUBSTITUTION IN TYROCIDINE [J].
FUJIKAWA, K ;
SAKAMOTO, Y ;
SUZUKI, T ;
KURAHASHI, K .
BIOCHIMICA ET BIOPHYSICA ACTA, 1968, 169 (02) :520-+
[8]   GRAMICIDIN-S SYNTHETASE - STABILITY OF REACTIVE THIOESTER INTERMEDIATES AND FORMATION OF 3-AMINO-2-PIPERIDONE [J].
GADOW, A ;
VATER, J ;
SCHLUMBOHM, W ;
PALACZ, Z ;
SALNIKOW, J ;
KLEINKAUF, H .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1983, 132 (02) :229-234
[9]   ANALYSIS OF CORE SEQUENCES IN THE D-PHE ACTIVATING DOMAIN OF THE MULTIFUNCTIONAL PEPTIDE SYNTHETASE TYCA BY SITE-DIRECTED MUTAGENESIS [J].
GOCHT, M ;
MARAHIEL, MA .
JOURNAL OF BACTERIOLOGY, 1994, 176 (09) :2654-2662
[10]   Dissecting and exploiting intermodular communication in polyketide synthases [J].
Gokhale, RS ;
Tsuji, SY ;
Cane, DE ;
Khosla, C .
SCIENCE, 1999, 284 (5413) :482-485