Competition between Energy and Electron Transfer from CdSe QDs to Adsorbed Rhodamine B

被引:120
作者
Boulesbaa, Abdelaziz [1 ]
Huang, Zhuangqun [1 ]
Wu, David [1 ]
Lian, Tianquan [1 ]
机构
[1] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
关键词
MULTIPLE EXCITON GENERATION; SEMICONDUCTOR QUANTUM DOTS; EFFICIENCY CARRIER MULTIPLICATION; ULTRAFAST CHARGE SEPARATION; LIGHT-EMITTING-DIODES; SOLAR-CELLS; MULTIEXCITON GENERATION; AQUEOUS-SOLUTION; COLLOIDAL PBSE; NANOCRYSTALS;
D O I
10.1021/jp909972b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the dynamics of exciton quenching in quantum dots (QDs) is essential to their potential applications, such as solar cells and biological imaging. In this work, the competition between electron and energy transfer from excited CdSe QDs to adsorbed rhodamine B (RhB) molecules was examined by time-resolved fluorescence decay, steady-state emission, and transient absorption measurements. The major pathway (84%) for exciton quenching in this system is through electron transfer to RhB, whereas similar to 16% of the excitons decay by energy transfer. In a sample with similar to 2-3 RhB per QD, exciton quenching occurs with an average time constant of 54 ps, and the charge-separated state has all average lifetime of 1 mu s. The charge separation rate depends oil the number of adsorbates attached to the QD, and the dependence can be well-described by a kinetics model that assumes a Poisson distribution of the number of adsorbates on the QDs.
引用
收藏
页码:962 / 969
页数:8
相关论文
共 79 条
[1]   Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion [J].
Achermann, Marc ;
Petruska, Melissa A. ;
Koleske, Daniel D. ;
Crawford, Mary H. ;
Klimov, Victor I. .
NANO LETTERS, 2006, 6 (07) :1396-1400
[2]   Influence of electronic structure and multiexciton spectral density on multiple-exciton generation in semiconductor nanocrystals: Tight-binding calculations [J].
Allan, G. ;
Delerue, C. .
PHYSICAL REVIEW B, 2008, 77 (12)
[3]   Multiple exciton generation in colloidal silicon nanocrystals [J].
Beard, Matthew C. ;
Knutsen, Kelly P. ;
Yu, Pingrong ;
Luther, Joseph M. ;
Song, Qing ;
Metzger, Wyatt K. ;
Ellingson, Randy J. ;
Nozik, Arthur J. .
NANO LETTERS, 2007, 7 (08) :2506-2512
[4]   Excited state and free radical properties of rhodamine dyes in aqueous solution: A laser flash photolysis and pulse radiolysis study [J].
Beaumont, PC ;
Johnson, DG ;
Parsons, PJ .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 1997, 107 (1-3) :175-183
[5]   On the absence of detectable carrier multiplication in a transient absorption study of InAs/CdSe/ZnSe core/shell1/shell2 quantum dots [J].
Ben-Lulu, Meirav ;
Mocatta, David ;
Bonn, Mischa ;
Banin, Uri ;
Ruhman, Sanford .
NANO LETTERS, 2008, 8 (04) :1207-1211
[6]   Electron relaxation in colloidal InP quantum dots with photogenerated excitons or chemically injected electrons [J].
Blackburn, JL ;
Ellingson, RJ ;
Micic, OI ;
Nozik, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (01) :102-109
[7]   Ultrafast charge separation at CdS quantum dot/rhodamine B molecule interface [J].
Boulesbaa, Abdelaziz ;
Issac, Abey ;
Stockwell, Dave ;
Huang, Zhuangqun ;
Huang, Jier ;
Guo, Jianchang ;
Lian, Tianquan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (49) :15132-+
[8]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016