Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367

被引:68
作者
Tolonen, Andrew C. [1 ]
Chilaka, Amanda C. [1 ,2 ]
Church, George M. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Biol, Boston, MA 02115 USA
关键词
GROUP-II INTRONS; SCAFFOLDING PROTEIN CIPC; ESCHERICHIA-COLI; SHUTTLE VECTORS; CONJUGATIVE TRANSFER; SEQUENCE-ANALYSIS; CELLULOLYTICUM; BACTERIA; DOMAINS; PLASMID;
D O I
10.1111/j.1365-2958.2009.06890.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
P>Microbial cellulose degradation is a central part of the global carbon cycle and has great potential for the development of inexpensive, carbon-neutral biofuels from non-food crops. Clostridium phytofermentans has a repertoire of 108 putative glycoside hydrolases to break down cellulose and hemicellulose into sugars, which this organism then ferments primarily to ethanol. An understanding of cellulose degradation at the molecular level requires learning the different roles of these hydrolases. In this study, we show that interspecific conjugation with Escherichia coli can be used to transfer a plasmid into C. phytofermentans that has a resistance marker, an origin of replication that can be selectively lost, and a designed group II intron for efficient, targeted chromosomal insertions without selection. We applied these methods to disrupt the cphy3367 gene, which encodes the sole family 9 glycoside hydrolase (GH9) in the C. phytofermentans genome. The GH9-deficient strain grew normally on some carbon sources such as glucose, but had lost the ability to degrade cellulose. Although C. phytofermentans upregulates the expression of numerous enzymes to break down cellulose, this process thus relies upon a single, key hydrolase, Cphy3367.
引用
收藏
页码:1300 / 1313
页数:14
相关论文
共 41 条
[21]   Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1 [J].
Maamar, H ;
Valette, O ;
Fierobe, HP ;
Bélaich, A ;
Bélaich, JP ;
Tardif, C .
MOLECULAR MICROBIOLOGY, 2004, 51 (02) :589-598
[22]   ISCce1 and ISCce2, two novel insertion sequences in Clostridium cellulolyticum [J].
Maamar, H ;
de Philip, P ;
Bélaich, JP ;
Tardif, C .
JOURNAL OF BACTERIOLOGY, 2003, 185 (03) :714-725
[23]   PHYSICAL AND GENETIC STUDIES WITH RESTRICTION ENDONUCLEASES ON BROAD HOST-RANGE PLASMID RK2 [J].
MEYER, R ;
FIGURSKI, D ;
HELINSKI, DR .
MOLECULAR & GENERAL GENETICS, 1977, 152 (02) :129-135
[24]   Solution structure of the module X2_1 of unknown function of the cellulosomal scaffolding protein CipC of Clostridium cellulolyticum [J].
Mosbah, A ;
Belaïch, A ;
Bornet, O ;
Belaïch, JP ;
Henrissat, B ;
Darbon, H .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 304 (02) :201-217
[25]   Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine:: A docking study [J].
Mulakala, C ;
Reilly, PJ .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 60 (04) :598-605
[26]  
Pagès S, 1999, J BACTERIOL, V181, P1801
[27]  
PERLACK RD, 2005, BIOMASS FEEDSTOCK BI, P7
[28]   Use of antisense RNA to modify the composition of cellulosomes produced by Clostridium cellulolyticum [J].
Perret, S ;
Maamar, H ;
Bélaich, JP ;
Tardif, C .
MOLECULAR MICROBIOLOGY, 2004, 51 (02) :599-607
[29]   Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes [J].
Perutka, J ;
Wang, WJ ;
Goerlitz, D ;
Lambowitz, AM .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 336 (02) :421-439
[30]   Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier [J].
Purdy, D ;
O'Keeffe, TAT ;
Elmore, M ;
Herbert, M ;
McLeod, A ;
Bokori-Brown, M ;
Ostrowski, A ;
Minton, NP .
MOLECULAR MICROBIOLOGY, 2002, 46 (02) :439-452