ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression

被引:198
作者
Aro, N [1 ]
Ilmén, M [1 ]
Saloheimo, A [1 ]
Penttilä, M [1 ]
机构
[1] VTT Biotechnol, FIN-02044 Espoo, Finland
关键词
D O I
10.1128/AEM.69.1.56-65.2003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We characterized the effect of deletion of the Trichoderma reesei (Hypocrea jecorina) ace1 gene encoding the novel cellulase regulator ACEI that was isolated based on its ability to bind to and activate in vivo in Saccharomyces cerevisiae the promoter of the main cellulase gene, cbh1. Deletion of ace1 resulted in an increase in the expression of all the main cellulase genes and two xylanase genes in sophorose- and cellulose-induced cultures, indicating that ACEI acts as a repressor of cellulase and xylanase expression. Growth of the strain with a deletion of the ace1 gene on different carbon sources was analyzed. On cellulose-based medium, on which cellulases are needed for growth, the Deltaace1 strain grew better than the host strain due to the increased cellulase production. On culture media containing sorbitol as the sole carbon source, the growth of the strain with a deletion of the ace1 gene was severely impaired, suggesting that ACEI regulates expression of other genes in addition to cellulase and xylanase genes. A strain with a deletion of the ace1 gene and with a deletion of the ace2 gene coding for the cellulase and xylanase activator ACEII expressed cellulases and xylanases similar to the Deltaace1 strain, indicating that yet another activator regulating cellulase and xylanase promoters was present.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 42 条
[1]   ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei [J].
Aro, N ;
Saloheimo, A ;
Ilmén, M ;
Penttilä, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :24309-24314
[2]  
BERGMEYER HU, 1974, METHODS ENZYMATIC AN, V2
[3]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[4]   Aspergillus enzymes involved in degradation of plant cell wall polysaccharides [J].
de Vries, RP ;
Visser, J .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2001, 65 (04) :497-+
[5]   ANALYSIS OF THE CREA GENE, A REGULATOR OF CARBON CATABOLITE REPRESSION IN ASPERGILLUS-NIDULANS [J].
DOWZER, CEA ;
KELLY, JM .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (11) :5701-5709
[6]   THE ASPERGILLUS-NIGER CARBON CATABOLITE REPRESSOR ENCODING GENE, CREA [J].
DRYSDALE, MR ;
KOLZE, SE ;
KELLY, JM .
GENE, 1993, 130 (02) :241-245
[7]   GENETIC-IMPROVEMENT OF TRICHODERMA-REESEI FOR LARGE-SCALE CELLULASE PRODUCTION [J].
DURAND, H ;
CLANET, M ;
TIRABY, G .
ENZYME AND MICROBIAL TECHNOLOGY, 1988, 10 (06) :341-346
[8]  
Gielkens MMC, 1999, APPL ENVIRON MICROB, V65, P4340
[9]   Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster [J].
Haas, H ;
Angermayr, K ;
Zadra, I ;
Stoffler, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (36) :22576-22582
[10]   The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression [J].
Hasper, AA ;
Visser, J ;
de Graaff, LH .
MOLECULAR MICROBIOLOGY, 2000, 36 (01) :193-200