Functional multilayered capsules for targeting and local drug delivery

被引:65
作者
Matsusaki, Michiya [1 ,2 ]
Akashi, Mitsuru [1 ,2 ]
机构
[1] Osaka Univ, Grad Sch Engn, Dept Appl Chem, Suita, Osaka 5650871, Japan
[2] Japan Sci & Technol Agcy, Kawaguchi, Saitama, Japan
关键词
controlled release; drug delivery system; hollow capsule; layer-by-layer; stimuli-responsive; targeting; HOLLOW POLYELECTROLYTE MICROCAPSULES; COLORECTAL-CANCER CELLS; ULTRATHIN POLYMER-FILMS; BY-LAYER ASSEMBLIES; DEXTRAN SULFATE; ALTERNATING BIOACTIVITY; ENZYMATIC DEGRADATION; CONTROLLED-RELEASE; SHELL STRUCTURE; GROWTH-FACTOR;
D O I
10.1517/17425240903280414
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
One of the key challenges in the field of bio-nanotechnology for drug delivery systems (DDS) is the development of nano- or micro-sized delivery carriers possessing both targeting functionalities for specific tissues or cells, and controlled release properties for encapsulated drug molecules, proteins and genes. Hollow capsules developed by layer-by-layer (LbL) assembly have attracted much attention over the past few years owing to their ability to be modified, their capacity to encapsulate a wide range of chemicals, and the variety of functionalities with which they can be enhanced. Current research on LbL capsules focuses on the development of functionalized capsules for specific targeting of cancer or immune cells, and on controlling their release properties by environmental stimuli. This review discusses recent advances in DDS using functional hollow capsules specific for the cellular and tissue-targeted delivery, as well as stimuli-responsive controlled release. DDS based on functional hollow capsules may contribute to the development of new nano-medicines.
引用
收藏
页码:1207 / 1217
页数:11
相关论文
共 104 条
[1]   Interactions between self-assembled polyelectrolyte shells and tumor cells [J].
Ai, H ;
Pink, JJ ;
Shuai, XT ;
Boothman, DA ;
Gao, JM .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2005, 73A (03) :303-312
[2]   Nano-encapsulation of furosemide microcrystals for controlled drug release [J].
Ai, H ;
Jones, SA ;
de Villiers, MM ;
Lvov, YM .
JOURNAL OF CONTROLLED RELEASE, 2003, 86 (01) :59-68
[3]   Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: Potential applications [J].
Akagi, Takami ;
Baba, Masanori ;
Akashi, Mitsuru .
POLYMER, 2007, 48 (23) :6729-6747
[4]   SYNTHESIS AND POLYMERIZATION OF A STYRYL TERMINATED OLIGOVINYLPYRROLIDONE MACROMONOMER [J].
AKASHI, M ;
KIRIKIHIRA, I ;
MIYAUCHI, N .
ANGEWANDTE MAKROMOLEKULARE CHEMIE, 1985, 132 (JUN) :81-89
[5]   Bioinspired colloidal systems via layer-by-layer assembly [J].
Angelatos, AS ;
Katagiri, K ;
Caruso, F .
SOFT MATTER, 2006, 2 (01) :18-23
[6]   Polyelectrolyte multilayer capsule permeability control [J].
Antipov, AA ;
Sukhorukov, GB ;
Leporatti, S ;
Radtchenko, IL ;
Donath, E ;
Möhwald, H .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2002, 198 :535-541
[7]   Polyelectrolyte multilayer capsules as vehicles with tunable permeability [J].
Antipov, AA ;
Sukhorukov, GB .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2004, 111 (1-2) :49-61
[8]   Layer-by-layer construction of multilayer thin films composed of avidin and biotin-labeled poly(amine)s [J].
Anzai, J ;
Kobayashi, Y ;
Nakamura, N ;
Nishimura, M ;
Hoshi, T .
LANGMUIR, 1999, 15 (01) :221-226
[9]   AC-magnetic field controlled drug release from magnetoliposomes:: design of a method for site-specific chemotherapy [J].
Babincová, M ;
Cicmanec, P ;
Altanerová, V ;
Altaner, C ;
Babinec, P .
BIOELECTROCHEMISTRY, 2002, 55 (1-2) :17-19
[10]   Buildup of exponentially growing multilayer polypeptide films with internal secondary structure [J].
Boulmedais, F ;
Ball, V ;
Schwinte, P ;
Frisch, B ;
Schaaf, P ;
Voegel, JC .
LANGMUIR, 2003, 19 (02) :440-445