Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus Basin

被引:96
作者
ul Hasson, Shabeh [1 ,2 ]
Bohner, Jurgen [1 ]
Lucarini, Valerio [1 ,3 ,4 ]
机构
[1] Univ Hamburg, Ctr Earth Syst Res & Sustainabil, CEN, Hamburg, Germany
[2] Inst Space Technol, Dept Space Sci, Islamabad, Pakistan
[3] Univ Reading, Dept Math & Stat, Reading, Berks, England
[4] Univ Reading, Walker Inst Climate Syst Res, Reading, Berks, England
关键词
RIVER-BASINS; MASS-BALANCE; SNOW COVER; TEMPERATURE; PRECIPITATION; FREQUENCY; EXTREMES; ALTITUDE; SIGNALS; IMPACT;
D O I
10.5194/esd-8-337-2017
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Largely depending on the meltwater from the Hindukush-Karakoram-Himalaya, withdrawals from the upper Indus Basin (UIB) contribute half of the surface water availability in Pakistan, indispensable for agricultural production systems, industrial and domestic use, and hydropower generation. Despite such importance, a comprehensive assessment of prevailing state of relevant climatic variables determining the water availability is largely missing. Against this background, this study assesses the trends in maximum, minimum and mean temperatures, diurnal temperature range and precipitation from 18 stations (1250-4500ma.s.l.) for their overlapping period of record (1995-2012) and, separately, from six stations of their long-term record (1961-2012). For this, a Mann-Kendall test on serially independent time series is applied to detect the existence of a trend, while its true slope is estimated using the Sen's slope method. Further, locally identified climatic trends are statistically assessed for their spatial-scale significance within 10 identified subregions of the UIB, and the spatially (field-) significant climatic trends are then qualitatively compared with the trends in discharge out of corresponding subregions. Over the recent period (1995-2012), we find warming and drying of spring (field-significant in March) and increasing early melt season discharge from most of the subregions, likely due to a rapid snowmelt. In stark contrast, most of the subregions feature a field- significant cooling within the monsoon period (particularly in July and September), which coincides well with the main glacier melt season. Hence, a decreasing or weakly increasing discharge is observed from the corresponding subregions during mid-to late melt season (particularly in July). Such tendencies, being largely consistent with the long-term trends (1961-2012), most likely indicate dominance of the nival but suppression of the glacial melt regime, altering overall hydrology of the UIB in future. These findings, though constrained by sparse and short observations, largely contribute in understanding the UIB melt runoff dynamics and address the hydroclimatic explanation of the "Karakoram Anomaly".
引用
收藏
页码:337 / 355
页数:19
相关论文
共 85 条
[51]  
Minora U., 2013, CRYOSPHERE DISCUSSIO, V7, P2891, DOI [10.5194/tcd-7-2891-2013, DOI 10.5194/TCD-7-2891-2013]
[52]   Rising and falling river flows: contrasting signals of climate change and glacier mass balance from the eastern and western Karakoram [J].
Mukhopadhyay, Biswajit ;
Khan, Asif ;
Gautam, Ritesh .
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2015, 60 (12) :2062-2085
[53]   A reevaluation of the snowmelt and glacial melt in river flows within Upper Indus Basin and its significance in a changing climate [J].
Mukhopadhyay, Biswajit ;
Khan, Asif .
JOURNAL OF HYDROLOGY, 2015, 527 :119-132
[54]   Rising river flows and glacial mass balance in central Karakoram [J].
Mukhopadhyay, Biswajit ;
Khan, Asif .
JOURNAL OF HYDROLOGY, 2014, 513 :192-203
[55]   Glacial varve thickness and 127 years of instrumental climate data: A comparison [J].
Ohlendorf, C ;
Niessen, F ;
Weissert, H .
CLIMATIC CHANGE, 1997, 36 (3-4) :391-411
[56]  
Pepin N, 2015, NAT CLIM CHANGE, V5, P424, DOI [10.1038/NCLIMATE2563, 10.1038/nclimate2563]
[57]   Impact of altitude and latitude on changes in temperature extremes over South Asia during 1971-2000 [J].
Revadekar, J. V. ;
Hameed, S. ;
Collins, D. ;
Manton, M. ;
Sheikh, M. ;
Borgaonkar, H. P. ;
Kothawale, D. R. ;
Adnan, M. ;
Ahmed, A. U. ;
Ashraf, J. ;
Baidya, S. ;
Islam, N. ;
Jayasinghearachchi, D. ;
Manzoor, N. ;
Premalal, K. H. M. S. ;
Shreshta, M. L. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2013, 33 (01) :199-209
[58]   Trend detection in hydrological series: when series are negatively correlated [J].
Rivard, Christine ;
Vigneault, Harold .
HYDROLOGICAL PROCESSES, 2009, 23 (19) :2737-2743
[59]  
Scherler D, 2011, NAT GEOSCI, V4, P156, DOI [10.1038/ngeo1068, 10.1038/NGEO1068]
[60]  
SEN PK, 1968, J AM STAT ASSOC, V63, P1379