Advanced elastomer nano-composites based on CNT-hybrid filler systems

被引:152
作者
Lorenz, H. [1 ]
Fritzsche, J. [1 ]
Das, A. [2 ]
Stoeckelhuber, K. W. [2 ]
Jurk, R. [2 ]
Heinrich, G. [2 ]
Klueppel, M. [1 ]
机构
[1] Deutsch Inst Kautschuktechnol eV, D-30519 Hannover, Germany
[2] Leibniz Inst Polymerforsch Dresden eV, D-01069 Dresden, Germany
关键词
Carbon nanotubes; Elastomers; Nano-composites; Fatigue crack propagation; Reinforcement; CARBON NANOTUBES; CONDUCTIVITY;
D O I
10.1016/j.compscitech.2009.05.014
中图分类号
TB33 [复合材料];
学科分类号
摘要
Different techniques to disperse multiwalled carbon nanotubes (CNT) in elastomers using an internal mixer are applied and physical properties of the composites are evaluated: stress-strain behavior, dynamic-mechanical, thermal diffusivity, dielectric and fracture mechanical properties. The electrical percolation threshold is found to decrease by using ethanol as dispersion agent, compared to "dry" mixing, correlating with improved optical dispersion. The effect of nanoscopic gaps between adjacent CNTs on the electrical and thermal conductivity of the composites and the missing percolation behavior of the thermal conductivity are discussed. We have found some technically promising synergetic effects of the hybrid filler systems. For all systems one observes significantly steeper stress-strain curves by addition of 1.6 vol.% CNT to the systems with conventional fillers. In natural rubber the fatigue crack propagation resistance, tensile strength and electrical conductivity is found to be improved also for dry mixed CNT-silica hybrid systems. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2135 / 2143
页数:9
相关论文
共 23 条
[1]   Thermal transport in MWCNT sheets and yarns [J].
Aliev, Ali E. ;
Guthy, Csaba ;
Zhang, Mei ;
Fang, Shaoli ;
Zakhidov, Anvar A. ;
Fischer, John E. ;
Baughman, Ray H. .
CARBON, 2007, 45 (15) :2880-2888
[2]   RECENT DEVELOPMENTS IN CONTINUUM PERCOLATION [J].
BALBERG, I .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06) :991-1003
[3]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[4]   Mechanical behavior at low strain of microgel containing elastomers [J].
Bischoff, A ;
Kluppel, M ;
Schuster, RH .
POLYMER BULLETIN, 1998, 40 (2-3) :283-290
[5]   Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene-butadiene and butadiene rubber blends [J].
Das, A. ;
Stoeckelhuber, K. W. ;
Jurk, R. ;
Saphiannikova, M. ;
Fritzsche, J. ;
Lorenz, H. ;
Klueppel, M. ;
Heinrich, G. .
POLYMER, 2008, 49 (24) :5276-5283
[6]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56
[7]  
Gent A.N., 2001, ENG RUBBER
[8]   Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites [J].
Gojny, FH ;
Wichmann, MHG ;
Fiedler, B ;
Kinloch, IA ;
Bauhofer, W ;
Windle, AH ;
Schulte, K .
POLYMER, 2006, 47 (06) :2036-2045
[9]  
HAVLIN S, 1991, FRACTALS DISORDERED, P137
[10]   Interfacial heat flow in carbon nanotube suspensions [J].
Huxtable, ST ;
Cahill, DG ;
Shenogin, S ;
Xue, LP ;
Ozisik, R ;
Barone, P ;
Usrey, M ;
Strano, MS ;
Siddons, G ;
Shim, M ;
Keblinski, P .
NATURE MATERIALS, 2003, 2 (11) :731-734