Numerical simulation of blow-up solutions of the vector nonlinear Schrodinger equation

被引:4
作者
Coleman, J [1 ]
Sulem, C [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 03期
关键词
D O I
10.1103/PhysRevE.66.036701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present numerical simulations of blow-up solutions of the vector nonlinear Schrodinger equation, which arises as the subsonic limit of the vectorial Zakharov system in plasma physics. In the course of our calculations, we observed the phenomenon of splitting of the solution profile. To capture the structure of the solution, we developed a new dynamic mesh refinement method based on the iterative grid distribution method introduced by Ren and Wang [J. Comput. Phys. 159, 246 (2000)]. We also applied this method to study the time dispersion nonlinear Schrodinger equation that describes the propagation of ultrashort pulses in a dispersive medium.
引用
收藏
页码:1 / 036701
页数:14
相关论文
共 27 条
[1]   Self-focusing of chirped optical pulses in media with normal dispersion [J].
Berge, L ;
Rasmussen, JJ ;
Kuznetsov, EA ;
Shapiro, EG ;
Turitsyn, SK .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1996, 13 (09) :1879-1891
[2]   Asymptotics of multibump blow-up self-similar solutions of the nonlinear Schrodinger equation [J].
Budd, CJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) :801-830
[3]   New self-similar solutions of the nonlinear Schrodinger equation with moving mesh computations [J].
Budd, CJ ;
Chen, SH ;
Russell, RD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) :756-789
[4]   THE ADAPTATION OF STRUCTURED GRIDS TO NUMERICAL-SOLUTIONS FOR TRANSONIC FLOW [J].
CATHERALL, D .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 32 (04) :921-937
[5]   Transverse collapse of Alfven wave-trains with small dispersion [J].
Champeaux, S ;
Passot, T ;
Sulem, PL .
PHYSICS OF PLASMAS, 1998, 5 (01) :100-111
[6]  
COLEMAN J, 2001, THESIS U TORONTO TOR
[7]  
Colin T, 1996, ANN I H POINCARE-PHY, V65, P57
[8]   BEAM SELF-FOCUSING IN THE PRESENCE OF A SMALL NORMAL TIME DISPERSION [J].
FIBICH, G ;
MALKIN, VM ;
PAPANICOLAOU, GC .
PHYSICAL REVIEW A, 1995, 52 (05) :4218-4228
[9]  
FIBICH G, UNPUB
[10]   Splittings, coalescence, bunch and snake patterns in the 3D nonlinear Schrodinger equation with anisotropic dispersion [J].
Germaschewski, K ;
Grauer, R ;
Bergé, L ;
Mezentsev, VK ;
Rasmussen, JJ .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 151 (2-4) :175-198