Performance of solid oxide fuel cells with LSGM-LSM composite cathodes

被引:38
作者
Armstrong, TJ [1 ]
Virkar, AV [1 ]
机构
[1] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
关键词
D O I
10.1149/1.1517282
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Anode-supported cells comprising Ni + yttria-stabilized zirconia (YSZ) anode, thin (similar to10 mum) YSZ electrolyte, and composite cathodes containing a mixture of La0.8Sr0.2MnO(3-delta) (LSM) and La0.9Sr0.1Ga0.8Mg0.2O(3-lambda) (LSGM) were fabricated. The relative proportions of LSGM and LSM were varied between 30 wt % LSGM + 70 wt % LSM and 70 wt % LSGM + 30 wt % LSM, while the firing temperature was varied between 1000 and 1200degreesC. The cathode interlayer composition had a profound effect on cathode performance at 800degreesC with overpotentials ranging between 60 and 425 mV at 1.0 A/cm(2) and exhibiting a minimum for 50 wt % LSGM + 50 wt % LSM. The cathodic overpotential decreased with increasing firing temperature of the composite interlayer in the range 1000 less than or equal to T less than or equal to 1150degreesC, and then increased dramatically for the interlayer fired at 1200degreesC. The cell with the optimized cathode interlayer of 50 wt % LSM + 50 wt % LSGM fired at 1150degreesC exhibited an area specific cell resistance of 0.18 Ohm cm(2) and a maximum power density of 1.4 W/cm(2) at 800degreesC. Chemical analysis revealed that LSGM reacts with YSZ above 1000degreesC to form the pyrochlore phase, La2Zr2O7. The formation of the pyrochlore phase at the interface between the LSGM/LSM composite cathode and the YSZ electrolyte limits the firing time and temperature of the cathode interlayer. (C) 2002 The Electrochemical Society.
引用
收藏
页码:A1565 / A1571
页数:7
相关论文
共 21 条
[21]   Geometric requirements of solid electrolyte cells with a reference electrode [J].
Winkler, J ;
Hendriksen, PV ;
Bonanos, N ;
Mogensen, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (04) :1184-1192