Efficient bulk heterojunction devices based on phenylenevinylene small molecule and perylene-pyrene bisimide

被引:84
作者
Sharma, G. D. [1 ,3 ]
Suresh, P. [1 ]
Mikroyannidis, John A. [2 ]
Stylianakis, Minas M. [2 ]
机构
[1] Jai Narain Vyas Univ, Dept Phys, Mol Elect & Optoelect Device Lab, Jodhpur 342005, Rajasthan, India
[2] Univ Patras, Dept Chem, Chem Technol Lab, GR-26500 Patras, Greece
[3] Jaipur Engn Coll, Jaipur, Rajasthan, India
关键词
POLYMER SOLAR-CELLS; LOW-BAND-GAP; ELECTRON INJECTION; PHOTOVOLTAIC CELLS; CHARGE-TRANSPORT; SENSITIZED ZNO; THIN-FILMS; DYE; PERFORMANCE; DERIVATIVES;
D O I
10.1039/b918527e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the fabrication and characterization of photovoltaic devices using a bulk heterojunction (BHJ) photoactive layer consisting of a small molecule (T), which contains a central p-phenylenevinylene unit, intermediate thiophene moieties, and terminal cyano-vinylene 4-nitrophenyls as the donor and a perylene-pyrene bisimide (PPI) as the acceptor. The difference in the LUMO levels (0.5 eV) of these materials is sufficient for the photoinduced charge transfer in the bulk heterojunction active layer. The optimum blend ratio (by weight) between T and PPI is 1 : 3.5 with a power conversion efficiency (PCE) of about 1.87%, beyond that the PCE starts to decrease. The incorporation of a thin ZnO layer between the organic BHJ layer and the top Al electrode increases the PCE to 2.46%, which is attributed to the enhanced light absorption due to the optical interference between incident light and reflected light from the Al electrode. It is also attributed to the improved electron transport in the device, since the conduction band of ZnO closely matches the work function of the Al electrode. The PCE is further increased to 3.17% when the device with the ZnO layer is annealed at a temperature of 100 degrees C for 5 min. This PCE is among the highest values reported to date for solar cells using solution processable small molecules.
引用
收藏
页码:561 / 567
页数:7
相关论文
共 74 条
[1]  
[Anonymous], ORGANIC PHOTOVOLTAIC
[2]   The effect of poly(3-hexylthiophene) molecular weight on charge transport and the performance of polymer:fullerene solar cells [J].
Ballantyne, Amy M. ;
Chen, Lichun ;
Dane, Justin ;
Hammant, Thomas ;
Braun, Felix M. ;
Heeney, Martin ;
Duffy, Warren ;
McCulloch, Iain ;
Bradley, Donal D. C. ;
Nelson, Jenny .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (16) :2373-2380
[3]   Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO [J].
Bauer, C ;
Boschloo, G ;
Mukhtar, E ;
Hagfeldt, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (24) :5585-5588
[4]   Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene) [J].
Blom, PWM ;
deJong, MJM ;
vanMunster, MG .
PHYSICAL REVIEW B, 1997, 55 (02) :R656-R659
[5]   Toward a rational design of poly(2,7-carbazole) derivatives for solar cells [J].
Blouin, Nicolas ;
Michaud, Alexandre ;
Gendron, David ;
Wakim, Salem ;
Blair, Emily ;
Neagu-Plesu, Rodica ;
Belletete, Michel ;
Durocher, Gilles ;
Tao, Ye ;
Leclerc, Mario .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (02) :732-742
[6]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[7]  
2-A
[8]   Titanyl phthalocyanine/C60 heterojunctions:: Band-edge offsets and photovoltaic device performance [J].
Brumbach, Michael ;
Placencia, Diogenes ;
Armstrong, Neal R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (08) :3142-3151
[9]   Low band gap polymers for organic photovoltaics [J].
Bundgaard, Eva ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (11) :954-985
[10]   Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells [J].
Chou, Tammy P. ;
Zhang, Qifeng ;
Cao, Guozhong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (50) :18804-18811