Identification of functional, endogenous programmed-1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae

被引:56
作者
Jacobs, Jonathan L. [1 ]
Belew, Ashton T. [1 ]
Rakauskaite, Rasa [1 ]
Dinman, Jonathan D. [1 ]
机构
[1] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD 20742 USA
关键词
D O I
10.1093/nar/gkl1033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In viruses, programmed -1 ribosomal frameshifting (-1 PRF) signals direct the translation of alternative proteins from a single mRNA. Given that many basic regulatory mechanisms were first discovered in viral systems, the current study endeavored to: (i) identify -1 PRF signals in genomic databases, (ii) apply the protocol to the yeast genome and (iii) test selected candidates at the bench. Computational analyses revealed the presence of 10 340 consensus -1 PRF signals in the yeast genome. Of the 6353 yeast ORFs, 1275 contain at least one strong and statistically significant -1 PRF signal. Eight out of nine selected sequences promoted efficient levels of PRF in vivo. These findings provide a robust platform for high throughput computational and laboratory studies and demonstrate that functional -1 PRF signals are widespread in the genome of Saccharomyces cerevisiae. The data generated by this study have been deposited into a publicly available database called the PRFdb. The presence of stable mRNA pseudoknot structures in these -1 PRF signals, and the observation that the predicted outcomes of nearly all of these genomic frameshift signals would direct ribosomes to premature termination codons, suggest two possible mRNA destabilization pathways through which -1 PRF signals could post-transcriptionally regulate mRNA abundance.
引用
收藏
页码:165 / 174
页数:10
相关论文
共 69 条
[1]  
ALTCHUL SF, 1990, J MOL BIOL, V215, P403
[2]   Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae [J].
Arava, Y ;
Wang, YL ;
Storey, JD ;
Liu, CL ;
Brown, PO ;
Herschlag, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3889-3894
[3]   RECODE 2003 [J].
Baranov, PV ;
Gurvich, OL ;
Hammer, AW ;
Gesteland, RF ;
Atkins, JF .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :87-89
[4]   Recoding: translational bifurcations in gene expression [J].
Baranov, PV ;
Gesteland, RF ;
Atkins, JF .
GENE, 2002, 286 (02) :187-201
[5]   The frameshift stimulatory signal of human immunodeficiency virus type 1 group O is a pseudoknot [J].
Baril, M ;
Dulude, D ;
Steinberg, SV ;
Brakier-Gingras, L .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 331 (03) :571-583
[6]   Pseudoknots in prion protein mRNAs confirmed by comparative sequence analysis and pattern searching [J].
Barrette, I ;
Poisson, G ;
Gendron, P ;
Major, F .
NUCLEIC ACIDS RESEARCH, 2001, 29 (03) :753-758
[7]   PROGRAMMED RIBOSOMAL FRAMESHIFTING GENERATES THE ESCHERICHIA-COLI DNA POLYMERASE-III GAMMA SUBUNIT FROM WITHIN THE GAMMA-SUBUNIT READING FRAME [J].
BLINKOWA, AL ;
WALKER, JR .
NUCLEIC ACIDS RESEARCH, 1990, 18 (07) :1725-1729
[8]   MUTATIONAL ANALYSIS OF THE SLIPPERY-SEQUENCE COMPONENT OF A CORONAVIRUS RIBOSOMAL FRAMESHIFTING SIGNAL [J].
BRIERLEY, I ;
JENNER, AJ ;
INGLIS, SC .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 227 (02) :463-479
[9]   Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals [J].
Chamary, JV ;
Hurst, LD .
GENOME BIOLOGY, 2005, 6 (09)
[10]   Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency [J].
Clote, P ;
Ferré, F ;
Kranakis, E ;
Krizanc, D .
RNA, 2005, 11 (05) :578-591