Optimal scheme for estimating a pure qubit state via local measurements -: art. no. 277904

被引:34
作者
Bagan, E [1 ]
Baig, M [1 ]
Muñoz-Tapia, R [1 ]
机构
[1] Univ Autonoma Barcelona, Fac Ciencias, Grp Fis Teor & IFAE, E-08193 Barcelona, Spain
关键词
D O I
10.1103/PhysRevLett.89.277904
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the optimal scheme for estimating a pure qubit state by means of local measurements on N identical copies. We give explicit examples for low N. For large N, we show that the fidelity saturates the collective measurement bound up to order 1/N. When the signal state lays on a meridian of the Bloch sphere, we show that this can be achieved without classical communication.
引用
收藏
页码:277904 / 277904
页数:4
相关论文
共 18 条
[1]   Optimal strategies for sending information through a quantum channel [J].
Bagan, E ;
Baig, M ;
Brey, A ;
Muñoz-Tapia, R ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (24) :5230-5233
[2]   Communication of spin directions with product states and finite measurements -: art. no. 022305 [J].
Bagan, E ;
Baig, M ;
Muñoz-Tapia, R .
PHYSICAL REVIEW A, 2001, 64 (02) :4
[3]   Optimal encoding and decoding of a spin direction -: art. no. 052309 [J].
Bagan, E ;
Baig, M ;
Brey, A ;
Muñoz-Tapia, R ;
Tarrach, R .
PHYSICAL REVIEW A, 2001, 63 (05) :523091-523091
[4]  
BAGAN E, IN PRESS
[5]   Fidelity trade-off for finite ensembles of identically prepared qubits [J].
Banaszek, K ;
Devetak, I .
PHYSICAL REVIEW A, 2001, 64 (05) :14-523071
[6]   Minimum decision cost for quantum ensembles [J].
Brody, D ;
Meister, B .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :1-5
[7]   Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement [J].
Derka, R ;
Buzek, V ;
Ekert, AK .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1571-1575
[8]   Quantum-state estimation by self-learning measurements [J].
Fischer, DG ;
Kienle, SH ;
Freyberger, M .
PHYSICAL REVIEW A, 2000, 61 (03) :6
[9]   State estimation for large ensembles [J].
Gill, RD ;
Massar, S .
PHYSICAL REVIEW A, 2000, 61 (04) :16
[10]   Self-learning estimation of quantum states [J].
Hannemann, T ;
Reiss, D ;
Balzer, C ;
Neuhauser, W ;
Toschek, PE ;
Wunderlich, C .
PHYSICAL REVIEW A, 2002, 65 (05) :4