The coordination of nuclear and mitochondrial communication during aging and calorie restriction

被引:170
作者
Finley, Lydia W. S. [1 ]
Haigis, Marcia C. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Pathol, Paul F Glenn Labs Biol Mech Aging, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
Mitochondria; Aging; SIRT1; PGC-1; alpha; Metabolism; AMPK; ACTIVATED PROTEIN-KINASE; FATTY-ACID OXIDATION; LIFE-SPAN EXTENSION; HUMAN SKELETAL-MUSCLE; AGE-RELATED-CHANGES; STIMULATED INSULIN-SECRETION; RECEPTOR-GAMMA COACTIVATOR-1; SMALL-MOLECULE ACTIVATORS; GENE-EXPRESSION; DIETARY RESTRICTION;
D O I
10.1016/j.arr.2009.03.003
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mitochondria are dynamic organelles that integrate environmental signals to regulate energy production, apoptosis and Ca2+ homeostasis. Not surprisingly, mitochondrial dysfunction is associated with aging and the pathologies observed in age-related diseases. The vast majority of mitochondrial proteins are encoded in the nuclear genome, and so communication between the nucleus and mitochondria is essential for maintenance of appropriate mitochondrial function. Several proteins have emerged as major regulators of mitochondrial gene expression, capable of increasing transcription of mitochondrial genes in response to the physiological demands of the cell. In this review, we will focus on PGC-1 alpha, SIRT1, AMPK and mTOR and discuss how these proteins regulate mitochondrial function and their potential involvement in aging, calorie restriction and age-related disease. We will also discuss the pathways through which mitochondria signal to the nucleus. Although such retrograde signaling is not well studied in mammals, there is growing evidence to suggest that it may be an important area for future aging research. Greater understanding of the mechanisms by which mitochondria and the nucleus communicate will facilitate efforts to slow or reverse the mitochondrial dysfunction that occurs during aging. Published by Elsevier Ireland Ltd.
引用
收藏
页码:173 / 188
页数:16
相关论文
共 267 条
[121]   Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2 [J].
Le Bacquer, Olivier ;
Petroulakis, Emmanuel ;
Paglialunga, Sabina ;
Poulin, Francis ;
Richard, Denis ;
Cianflone, Katherine ;
Sonenberg, Nahum .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (02) :387-396
[122]   Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts [J].
Lee, CK ;
Allison, DB ;
Brand, J ;
Weindruch, R ;
Prolla, TA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (23) :14988-14993
[123]   A systematic RNAi screen identifies a critical role for mitochondria in C-elegans longevity [J].
Lee, SS ;
Lee, RYN ;
Fraser, AG ;
Kamath, RS ;
Ahringer, J ;
Ruvkun, G .
NATURE GENETICS, 2003, 33 (01) :40-48
[124]   AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARα and PGC-1 [J].
Lee, WJ ;
Kim, M ;
Park, HS ;
Kim, HS ;
Jeon, MJ ;
Oh, KS ;
Koh, EH ;
Won, JC ;
Kim, MS ;
Oh, GT ;
Yoon, M ;
Lee, KU ;
Park, JY .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 340 (01) :291-295
[125]   Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis [J].
Lehman, JJ ;
Barger, PM ;
Kovacs, A ;
Saffitz, JE ;
Medeiros, DM ;
Kelly, DP .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (07) :847-856
[126]   PGC-1α deficiency causes multi-system energy metabolic derangements:: Muscle dysfunction, abnormal weight control and hepatic steatosis [J].
Leone, TC ;
Lehman, JJ ;
Finck, BN ;
Schaeffer, PJ ;
Wende, AR ;
Boudina, S ;
Courtois, M ;
Wozniak, DF ;
Sambandam, N ;
Bernal-Mizrachi, C ;
Chen, ZJ ;
Holloszy, JO ;
Medeiros, DM ;
Schmidt, RE ;
Saffitz, JE ;
Abel, ED ;
Semenkovich, CF ;
Kelly, DP .
PLOS BIOLOGY, 2005, 3 (04) :672-687
[127]   SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons [J].
Li, Ying ;
Xu, Wei ;
McBurney, Michael W. ;
Longo, Valter D. .
CELL METABOLISM, 2008, 8 (01) :38-48
[128]   Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres [J].
Lin, J ;
Wu, H ;
Tarr, PT ;
Zhang, CY ;
Wu, ZD ;
Boss, O ;
Michael, LF ;
Puigserver, P ;
Isotani, E ;
Olson, EN ;
Lowell, BB ;
Bassel-Duby, R ;
Spiegelman, BM .
NATURE, 2002, 418 (6899) :797-801
[129]   Defects in adaptive energy metabolism with CNS-Linked hyperactivity in PGC-1α null mice [J].
Lin, JD ;
Wu, PH ;
Tarr, PT ;
Lindenberg, KS ;
St-Pierre, J ;
Zhang, CY ;
Mootha, VK ;
Jäger, S ;
Vianna, CR ;
Reznick, RM ;
Cui, LB ;
Manieri, M ;
Donovan, MX ;
Wu, ZD ;
Cooper, MP ;
Fan, MC ;
Rohas, LM ;
Zavacki, AM ;
Cinti, S ;
Shulman, GI ;
Lowell, BB ;
Krainc, D ;
Spiegelman, BM .
CELL, 2004, 119 (01) :121-+
[130]   PGC-1β in the regulation of hepatic glucose and energy metabolism [J].
Lin, JD ;
Tarr, PT ;
Yang, RJ ;
Rhee, J ;
Puigserver, P ;
Newgard, CB ;
Spiegelman, BM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (33) :30843-30848