Specific interactions of the wing domains of FOXA1 transcription factor with DNA

被引:58
作者
Cirillo, Lisa A.
Zaret, Kenneth S.
机构
[1] Fox Chase Canc Ctr, Program Cell & Dev Biol, Philadelphia, PA 19111 USA
[2] Med Coll Wisconsin, Dept Cell Biol Neurobiol & Anat, Milwaukee, WI 53226 USA
关键词
FOX transcription factors; wing domains; DNA binding; hydroxyl radical footprinting;
D O I
10.1016/j.jmb.2006.11.087
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
FOX (forkhead box) transcription factors have diverse regulatory roles in development, signaling, and longevity, as well as being able to bind stably to target sites in silent chromatin. Crystal structure analysis showed that the FOXA DNA binding domain folds into a helix-turn-helix (HTH) motif flanked on either side by "wings" of polypeptide chain. The wings have the potential to interact with the DNA minor groove along the long axis of the DNA helix, flanking the HTH interactions with the major groove. Diverse FOX family homologs exist, and structural studies with certain DNA target sites suggest that neither of the wing regions are well ordered or provide a stable contribution to DNA target site binding. However, FOXA1 binds certain DNA target sites with high affinity, and as a monomer. To determine whether the wing domains contribute to stable DNA binding, we assessed complexes of FOXA with high and lower affinity DNA target sites by hydroxyl radical footprinting and site-directed mutagenesis. The data revealed clear protections predicted for wing interactions at the high affinity target, but less so at the lower affinity target, indicating that the wing domains stably interact with high affinity DNA sites for FOXA proteins. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:720 / 724
页数:5
相关论文
共 34 条
[1]   HNF-3-BETA IS ESSENTIAL FOR NODE AND NOTOCHORD FORMATION IN MOUSE DEVELOPMENT [J].
ANG, SL ;
ROSSANT, J .
CELL, 1994, 78 (04) :561-574
[2]   DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone [J].
Balasubramanian, B ;
Pogozelski, WK ;
Tullius, TD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :9738-9743
[3]  
Bossard P, 1998, DEVELOPMENT, V125, P4909
[4]   Different DNA contact schemes are used by two winged helix proteins to recognize a DNA binding sequence [J].
Bravieri, R ;
Shiyanova, T ;
Chen, TH ;
Liao, XB .
NUCLEIC ACIDS RESEARCH, 1997, 25 (14) :2888-2896
[5]   Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical 'footprinting' [J].
Brenowitz, M ;
Chance, MR ;
Dhavan, G ;
Takamoto, K .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (05) :648-653
[6]   Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1 [J].
Carroll, JS ;
Liu, XS ;
Brodsky, AS ;
Li, W ;
Meyer, CA ;
Szary, AJ ;
Eeckhoute, J ;
Shao, WL ;
Hestermann, EV ;
Geistlinger, TR ;
Fox, EA ;
Silver, PA ;
Brown, M .
CELL, 2005, 122 (01) :33-43
[7]   An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA [J].
Cirillo, LA ;
Zaret, KS .
MOLECULAR CELL, 1999, 4 (06) :961-969
[8]   Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4 [J].
Cirillo, LA ;
Lin, FR ;
Cuesta, I ;
Friedman, D ;
Jarnik, M ;
Zaret, KS .
MOLECULAR CELL, 2002, 9 (02) :279-289
[9]   Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome [J].
Cirillo, LA ;
McPherson, CE ;
Bossard, P ;
Stevens, K ;
Cherian, S ;
Shim, EY ;
Clark, KL ;
Burley, SK ;
Zaret, KS .
EMBO JOURNAL, 1998, 17 (01) :244-254
[10]   CO-CRYSTAL STRUCTURE OF THE HNF-3/FORK HEAD DNA-RECOGNITION MOTIF RESEMBLES HISTONE-H5 [J].
CLARK, KL ;
HALAY, ED ;
LAI, ES ;
BURLEY, SK .
NATURE, 1993, 364 (6436) :412-420