Analysis of photovoltage decay transients in dye-sensitized solar cells

被引:79
作者
Walker, Alison B. [1 ]
Peter, L. M.
Lobato, K.
Cameron, P. J.
机构
[1] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
[2] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1021/jp064860z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is shown that application of the so-called quasi-static approximation greatly simplifies the theoretical treatment of the open circuit photovoltage decay of dye-sensitized nanostructured solar cells (DSCs), since it removes the need to treat the kinetics of trapping and detrapping explicitly and leads to a straightforward analytical solution in the case of an exponential trap distribution. To identify the conditions under which the quasistatic approach is valid, transients calculated using the quasi-static approximation are compared with the results of numerical calculations that treat trapping and detrapping of electrons explicitly. The application of the quasi-static approach to derive the rate constant for the back-reaction of electrons from experimental photovoltage decay data is illustrated for an optimized DSC.
引用
收藏
页码:25504 / 25507
页数:4
相关论文
共 28 条
[1]   Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells [J].
Bailes, M ;
Cameron, PJ ;
Lobato, K ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (32) :15429-15435
[2]   Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells [J].
Bisquert, J ;
Cahen, D ;
Hodes, G ;
Rühle, S ;
Zaban, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (24) :8106-8118
[3]   Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method [J].
Bisquert, J ;
Zaban, A ;
Greenshtein, M ;
Mora-Seró, I .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (41) :13550-13559
[4]   Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells [J].
Bisquert, J ;
Vikhrenko, VS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (07) :2313-2322
[5]   The trap-limited diffusivity of electrons in nanoporous semiconductor networks permeated with a conductive phase [J].
Bisquert, J ;
Zaban, A .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2003, 77 (3-4) :507-514
[6]   How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? [J].
Cameron, PJ ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (15) :7392-7398
[7]   How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells? [J].
Cameron, PJ ;
Peter, LM ;
Hore, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (02) :930-936
[8]   Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells [J].
Cameron, PJ ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (51) :14394-14400
[9]   Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells [J].
Cass, MJ ;
Qiu, FL ;
Walker, AB ;
Fisher, AC ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (01) :113-119
[10]   Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells [J].
Duffy, NW ;
Peter, LM ;
Rajapakse, RMG ;
Wijayantha, KGU .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (38) :8916-8919