Filter bank algorithms for piecewise linear prewavelets on arbitrary triangulations

被引:14
作者
Floater, MS [1 ]
Quak, EG [1 ]
Reimers, M [1 ]
机构
[1] SINTEF Appl Math, N-0314 Oslo, Norway
关键词
wavelet spaces; prewavelets; piecewise linear splines; triangulations; local support; filter bank algorithms; thresholding;
D O I
10.1016/S0377-0427(00)00378-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies algorithms for decomposition, reconstruction, and approximation based on piecewise linear prewavelets on bounded triangulations of arbitrary topology. Our key mathematical result is showing that the Schur complement of the associated two scale matrix is symmetric, positive definite, and well conditioned. Numerical examples suggest that thresholding based on prewavelets yields a smaller approximation error than when based on the simple 'Faber' decomposition scheme. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:185 / 207
页数:23
相关论文
共 14 条
[1]  
DAEHLEN MT, MULTIRESOLUTION AN 1
[2]  
Davis PJ., 1979, Circulant Matrices
[3]  
Faber G, 1909, MATH ANN, V66, P81
[4]   Piecewise linear prewavelets on arbitrary triangulations [J].
Floater, MS ;
Quak, EG .
NUMERISCHE MATHEMATIK, 1999, 82 (02) :221-252
[5]  
FLOATER MS, 1998, APPROXIMATION THEO 9, V2, P63
[6]  
FLOATER MS, IN PRESS SIAM J NUME
[7]   SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS [J].
FRANKE, R .
MATHEMATICS OF COMPUTATION, 1982, 38 (157) :181-200
[8]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436
[9]  
KOTYCZKA U, 1995, APPROXIMATION THEO 8, V2, P235
[10]  
LAI MJ, IN PRESS SPLINES TRI