Regulation of MicroRNA Biogenesis: A miRiad of mechanisms

被引:242
作者
Davis, Brandi N. [1 ,2 ]
Hata, Akiko [1 ,2 ]
机构
[1] Tufts Univ, Sch Med, Dept Biochem, Boston, MA 02111 USA
[2] Tufts Med Ctr, Mol Cardiol Res Inst, Boston, MA 02111 USA
关键词
ENHANCES RNA INTERFERENCE; 3' UNTRANSLATED REGIONS; GROWTH-FACTOR RECEPTOR; BINDING-PROTEIN; POSTTRANSCRIPTIONAL REGULATION; MESSENGER-RNAS; LET-7; MICRORNA; NUCLEAR EXPORT; DOWN-REGULATION; HUMAN CANCER;
D O I
10.1186/1478-811X-7-18
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
microRNAs are small, non-coding RNAs that influence diverse biological functions through the repression of target genes during normal development and pathological responses. Widespread use of microRNA arrays to profile microRNA expression has indicated that the levels of many microRNAs are altered during development and disease. These findings have prompted a great deal of investigation into the mechanism and function of microRNA-mediated repression. However, the mechanisms which govern the regulation of microRNA biogenesis and activity are just beginning to be uncovered. Following transcription, mature microRNA are generated through a series of coordinated processing events mediated by large protein complexes. It is increasingly clear that microRNA biogenesis does not proceed in a 'one-size-fits-all' manner. Rather, individual classes of microRNAs are differentially regulated through the association of regulatory factors with the core microRNA biogenesis machinery. Here, we review the regulation of microRNA biogenesis and activity, with particular focus on mechanisms of post-transcriptional control. Further understanding of the regulation of microRNA biogenesis and activity will undoubtedly provide important insights into normal development as well as pathological conditions such as cardiovascular disease and cancer.
引用
收藏
页数:22
相关论文
共 221 条
[11]   Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes [J].
Baskerville, S ;
Bartel, DP .
RNA, 2005, 11 (03) :241-247
[12]   MRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes [J].
Behm-Ansmant, Isabelle ;
Rehwinkel, Jan ;
Doerks, Tobias ;
Stark, Alexander ;
Bork, Peer ;
Izaurralde, Elisa .
GENES & DEVELOPMENT, 2006, 20 (14) :1885-1898
[13]   A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis [J].
Ben-Ami, Oren ;
Pencovich, Niv ;
Lotem, Joseph ;
Levanon, Ditsa ;
Groner, Yoram .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (01) :238-243
[14]   Mammalian mirtron genes [J].
Berezikov, Eugene ;
Chung, Wei-Jen ;
Willis, Jason ;
Cuppen, Edwin ;
Lai, Eric C. .
MOLECULAR CELL, 2007, 28 (02) :328-336
[15]   Relief of microRNA-mediated translational repression in human cells subjected to stress [J].
Bhattacharyya, Suvendra N. ;
Habermacher, Regula ;
Martine, Ursula ;
Closs, Ellen I. ;
Filipowicz, Witold .
CELL, 2006, 125 (06) :1111-1124
[16]   Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins [J].
Black, BL ;
Olson, EN .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :167-196
[17]   MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis [J].
Bloomston, Mark ;
Frankel, Wendy L. ;
Petrocca, Fabio ;
Volinia, Stefano ;
Alder, Hansjuerg ;
Hagan, John P. ;
Liu, Chang-Gong ;
Bhatt, Darshna ;
Taccioli, Cristian ;
Croce, Carlo M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2007, 297 (17) :1901-1908
[18]   Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs [J].
Bohnsack, MT ;
Czaplinski, K ;
Görlich, D .
RNA, 2004, 10 (02) :185-191
[19]   RNA polymerase III transcribes human microRNAs [J].
Borchert, Glen M. ;
Lanier, William ;
Davidson, Beverly L. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (12) :1097-1101
[20]   Regulation of cyclin D1 RNA stability by SNIP1 [J].
Bracken, Cameron P. ;
Wall, Steven J. ;
Barre, Benjamin ;
Panov, Kostya I. ;
Ajuh, Paul M. ;
Perkins, Neil D. .
CANCER RESEARCH, 2008, 68 (18) :7621-7628