Application of Bayesian structural equation modeling for examining phytoplankton dynamics in the Neuse River Estuary (North Carolina, USA)

被引:42
作者
Arhonditsis, G. B.
Paerl, H. W.
Valdes-Weaver, L. M.
Stow, C. A.
Steinberg, L. J.
Reckhow, K. H.
机构
[1] Univ Toronto, Dept Phys & Environm Sci, Scarborough, ON M1C 1A4, Canada
[2] Univ N Carolina, Inst Marine Sci, Morehead City, NC 28557 USA
[3] NOAA, Great Lakes Environm Res Lab, Ann Arbor, MI 48105 USA
[4] So Methodist Univ, Dept Civil & Environm Engn, Dallas, TX 75275 USA
[5] Duke Univ, Nicholas Sch Environm & Earth Sci, Durham, NC 27708 USA
关键词
phytoplankton dynamics; structural equation modeling; Neuse River Estuary; aggregate variability; compositional variability; eutrophication;
D O I
10.1016/j.ecss.2006.09.022
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
We introduce a Bayesian structural equation modeling framework to explore the spatiotemporal phytoplankton community patterns in the Neuse River Estuary (study period 1995-2001). The initial hypothesized model considered the influence of the physical environment (flow, salinity, and light availability), nitrogen (dissolved oxidized inorganic nitrogen, and total dissolved inorganic nitrogen), and temperature on total phytoplankton biomass and phytoplankton community structure. Generally, the model gave plausible results and enabled the identification of the longitudinal role of the abiotic factors on the observed phytoplankton dynamics. River flow fluctuations and the resulting salinity and light availability changes (physical environment) dominate the up-estuary processes and loosen the coupling between nitrogen and phytoplankton. Further insights into the phytoplankton community response were provided by the positive path coefficients between the physical environment and diatoms, chlorophytes, and cryptophytes in the down-estuary sections. The latter finding supports an earlier hypothesis that these three groups dominate the phytoplankton community during high freshwater conditions as a result of their faster nutrient uptake and growth rates and their tolerance on low salinity conditions. The relationship between dissolved inorganic nitrogen concentrations and phytoplankton community becomes more apparent as we move to the down-estuary sections. A categorization of the phytoplankton community into cyanobacteria, dinoflagellates and an assemblage that consists of diatoms, chlorophytes, and cryptophytes provided the best results in the upper and middle segments of the estuary. Finally, the optimal down-estuary grouping aggregates diatoms and chlorophytes, lumps together dinoflagellates with cryptophytes, while cyanobacteria are treated separately. These structural shifts in the temporal phytoplankton community patterns probably result from combined bottom-up and top-down control effects. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:63 / 80
页数:18
相关论文
共 51 条
[1]  
*AM RIV FDN, 1997, REP 20 MOST THREAT A
[2]   Analysis of phytoplankton community structure using similarity indices: A new methodology for discriminating among eutrophication levels in coastal marine ecosystems [J].
Arhonditsis, G ;
Karydis, M ;
Tsirtsis, G .
ENVIRONMENTAL MANAGEMENT, 2003, 31 (05) :619-632
[3]   Exploring ecological patterns with structural equation modeling and Bayesian analysis [J].
Arhonditsis, GB ;
Stow, CA ;
Steinberg, LJ ;
Kenney, MA ;
Lathrop, RC ;
McBride, SJ ;
Reckhow, KH .
ECOLOGICAL MODELLING, 2006, 192 (3-4) :385-409
[4]   Eutrophication model for Lake Washington (USA) Part II - model calibration and system dynamics analysis [J].
Arhonditsis, GB ;
Brett, MT .
ECOLOGICAL MODELLING, 2005, 187 (2-3) :179-200
[5]  
Bollen K. A., 1989, Structural equations with latent variables, DOI DOI 10.1002/9781118619179
[6]   Confounding effect of flow on estuarine response to nitrogen loading [J].
Borsuk, ME ;
Stow, CA ;
Reckhow, KH .
JOURNAL OF ENVIRONMENTAL ENGINEERING, 2004, 130 (06) :605-614
[7]   Modelling oxygen dynamics in an intermittently stratified estuary: Estimation of process rates using field data [J].
Borsuk, ME ;
Stow, CA ;
Luettich, RA ;
Paerl, HW ;
Pinckney, JL .
ESTUARINE COASTAL AND SHELF SCIENCE, 2001, 52 (01) :33-49
[8]   Empirical analysis of the effect of phosphorus limitation on algal food quality for freshwater zooplankton [J].
Brett, MT ;
Müller-Navarra, DC ;
Park, SK .
LIMNOLOGY AND OCEANOGRAPHY, 2000, 45 (07) :1564-1575
[9]   Estimating the spatial extent of bottom-water hypoxia and habitat degradation in a shallow estuary [J].
Buzzelli, CP ;
Luettich, RA ;
Powers, SP ;
Peterson, CH ;
McNinch, JE ;
Pinckney, JL ;
Paerl, HW .
MARINE ECOLOGY PROGRESS SERIES, 2002, 230 :103-112
[10]   MULTIYEAR DISTRIBUTION PATTERNS OF NUTRIENTS WITHIN THE NEUSE RIVER ESTUARY, NORTH-CAROLINA [J].
CHRISTIAN, RR ;
BOYER, JN ;
STANLEY, DW .
MARINE ECOLOGY PROGRESS SERIES, 1991, 71 (03) :259-274