eComputational prediction of proteotypic peptides for quantitative proteomics

被引:524
作者
Mallick, Parag
Schirle, Markus
Chen, Sharon S.
Flory, Mark R.
Lee, Hookeun
Martin, Daniel
Raught, Brian
Schmitt, Robert
Werner, Thilo
Kuster, Bernhard
Aebersold, Ruedi
机构
[1] Inst Syst biol, Seattle, WA 98103 USA
[2] Cedars Sinai Med Ctr, Los Angeles, CA 90048 USA
[3] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[4] Cellzome AG, D-69117 Heidelberg, Germany
[5] Univ Zurich, Inst Mol Syst Biol, ETH, CH-8006 Zurich, Switzerland
[6] Univ Zurich, Fac Sci, CH-8006 Zurich, Switzerland
关键词
D O I
10.1038/nbt1275
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Mass spectrometry-based quantitative proteomics has become an important component of biological and clinical research. Although such analyses typically assume that a protein's peptide fragments are observed with equal likelihood, only a few so-called 'proteotypic' peptides are repeatedly and consistently identified for any given protein present in a mixture. Using 4600,000 peptide identifications generated by four proteomic platforms, we empirically identified > 16,000 proteotypic peptides for 4,030 distinct yeast proteins. Characteristic physicochemical properties of these peptides were used to develop a computational tool that can predict proteotypic peptides for any protein from any organism, for a given platform, with > 85% cumulative accuracy. Possible applications of proteotypic peptides include validation of protein identifications, absolute quantification of proteins, annotation of coding sequences in genomes, and characterization of the physical principles governing key elements of mass spectrometric workflows (e.g., digestion, chromatography, ionization and fragmentation).
引用
收藏
页码:125 / 131
页数:7
相关论文
共 30 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Proteomic characterization of the human centrosome by protein correlation profiling [J].
Andersen, JS ;
Wilkinson, CJ ;
Mayor, T ;
Mortensen, P ;
Nigg, EA ;
Mann, M .
NATURE, 2003, 426 (6966) :570-574
[3]   A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling [J].
Blagoev, B ;
Kratchmarova, I ;
Ong, SE ;
Nielsen, M ;
Foster, LJ ;
Mann, M .
NATURE BIOTECHNOLOGY, 2003, 21 (03) :315-318
[4]   Cleavage N-terminal to proline: Analysis of a database of peptide tandem mass spectra [J].
Breci, LA ;
Tabb, DL ;
Yates, JR ;
Wysocki, VH .
ANALYTICAL CHEMISTRY, 2003, 75 (09) :1963-1971
[5]   Open source system for analyzing, validating, and storing protein identification data [J].
Craig, R ;
Cortens, JP ;
Beavis, RC .
JOURNAL OF PROTEOME RESEARCH, 2004, 3 (06) :1234-1242
[6]   Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein [J].
De Strooper, B ;
Saftig, P ;
Craessaerts, K ;
Vanderstichele, H ;
Guhde, G ;
Annaert, W ;
Von Figura, K ;
Van Leuven, F .
NATURE, 1998, 391 (6665) :387-390
[7]  
Desiere F, 2005, GENOME BIOL, V6
[8]   Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture [J].
Durr, E ;
Yu, JY ;
Krasinska, KM ;
Carver, LA ;
Yates, JR ;
Testa, JE ;
Oh, P ;
Schnitzer, JE .
NATURE BIOTECHNOLOGY, 2004, 22 (08) :985-992
[9]   Protein function in the post-genomic era [J].
Eisenberg, D ;
Marcotte, EM ;
Xenarios, I ;
Yeates, TO .
NATURE, 2000, 405 (6788) :823-826
[10]   Advances in quantitative proteomics using stable isotope tags [J].
Flory, MR ;
Griffin, TJ ;
Martin, D ;
Aebersold, R .
TRENDS IN BIOTECHNOLOGY, 2002, 20 (12) :S23-S29