Isogeometric shell analysis with Kirchhoff-Love elements

被引:779
作者
Kiendl, J. [1 ]
Bletzinger, K-U. [1 ]
Linhard, J. [1 ]
Wuechner, R. [1 ]
机构
[1] Tech Univ Munich, Lehrstuhl Stat, D-80333 Munich, Germany
关键词
Isogeometric; NURBS; Shell; Rotation-free; Kirchhoff-Love; CAD;
D O I
10.1016/j.cma.2009.08.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Kirchhoff-Love shell element is developed on the basis of the isogeometric approach [16]. NURBS as basis functions for analysis have proven to be very efficient and offer the great feature of exact geometric representation. For a Kirchhoff-Love shell element they additionally have the significant advantage that the necessary continuities between elements are easily achieved. The element is formulated geometrically nonlinear. It is discretized by displacement degrees of freedom only. Aspects related to rotational degrees of freedom are handled by the displacement control variables, too. A NURBS-based CAD program is used to model shell structures built up from NURBS and isogeometric analysis is performed on the same model without meshing. Different examples show the performance of this method and its applicability for the integration of design and analysis. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3902 / 3914
页数:13
相关论文
共 28 条
[1]  
[Anonymous], 1985, Finite Elements Anal Des, DOI [10.1016/0168-874X(85)90003-4, DOI 10.1016/0168-874X(85)90003-4]
[2]  
[Anonymous], 1985, GRUNDLAGEN INGENIEUR, DOI DOI 10.1007/978-3-322-93983-8
[3]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[4]   STRESS PROJECTION FOR MEMBRANE AND SHEAR LOCKING IN SHELL FINITE-ELEMENTS [J].
BELYTSCHKO, T ;
STOLARSKI, H ;
LIU, WK ;
CARPENTER, N ;
ONG, JSJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1985, 51 (1-3) :221-258
[5]  
Belytschko T., 2014, Nonlinear Finite Elements For Continua and Structures
[6]  
Bischoff M., 2004, Encyclopedia of Computational Mechanics
[7]   Optimal shapes of mechanically motivated surfaces [J].
Bletzinger, Kai-Uwe ;
Firl, Matthias ;
Linhard, Johannes ;
Wuechner, Roland .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :324-333
[8]   Structural optimization and form finding of light weight structures [J].
Bletzinger, KU ;
Ramm, E .
COMPUTERS & STRUCTURES, 2001, 79 (22-25) :2053-2062
[9]  
Cirak F, 2000, INT J NUMER METH ENG, V47, P2039, DOI 10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO
[10]  
2-1