Implementing Machine Learning in Radiology Practice and Research

被引:217
作者
Kohli, Marc [1 ]
Prevedello, Luciano M. [2 ]
Filice, Ross W. [3 ]
Geis, J. Raymond [4 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 505 Parnassus Ave,M-391, San Francisco, CA 94143 USA
[2] Ohio State Univ, Wexner Med Ctr, Columbus, OH USA
[3] MedStar Georgetown Univ Hosp, Dept Radiol, Washington, DC USA
[4] Univ Colorado, Sch Med, Dept Radiol, Ft Collins, CO USA
关键词
artificial intelligence; imaging; informatics; machine learning; statistics; SUPPORT VECTOR MACHINE; TEXTURE ANALYSIS;
D O I
10.2214/AJR.16.17224
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
OBJECTIVE. The purposes of this article are to describe concepts that radiologists should understand to evaluate machine learning projects, including common algorithms, supervised as opposed to unsupervised techniques, statistical pitfalls, and data considerations for training and evaluation, and to briefly describe ethical dilemmas and legal risk. CONCLUSION. Machine learning includes a broad class of computer programs that improve with experience. The complexity of creating, training, and monitoring machine learning indicates that the success of the algorithms will require radiologist involvement for years to come, leading to engagement rather than replacement.
引用
收藏
页码:754 / 760
页数:7
相关论文
共 17 条
[1]  
[Anonymous], J DIGIT IMAGING
[2]  
[Anonymous], A KARPATHY BLOG
[3]  
[Anonymous], MACHINE LEARNING ALG
[4]  
Cheng JZ, 2016, SCI REP-UK, V6, DOI [10.1038/srep24454, 10.1038/srep25671]
[5]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[6]   Three-dimensional solid texture analysis in biomedical imaging: Review and opportunities [J].
Depeursinge, Adrien ;
Foncubierta-Rodriguez, Antonio ;
De Ville, Dimitri Van ;
Mueller, Henning .
MEDICAL IMAGE ANALYSIS, 2014, 18 (01) :176-196
[7]   Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates [J].
Eklund, Anders ;
Nichols, Thomas E. ;
Knutsson, Hans .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (28) :7900-7905
[8]  
Fodor I.K, 2002, SURVEY DIMENSION RED, DOI DOI 10.2172/15002155
[9]   Machine learning: Trends, perspectives, and prospects [J].
Jordan, M. I. ;
Mitchell, T. M. .
SCIENCE, 2015, 349 (6245) :255-260
[10]   MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas [J].
Korfiatis, Panagiotis ;
Kline, Timothy L. ;
Coufalova, Lucie ;
Lachance, Daniel H. ;
Parney, Ian F. ;
Carter, Rickey E. ;
Buckner, Jan C. ;
Erickson, Bradley J. .
MEDICAL PHYSICS, 2016, 43 (06) :2835-2844