Changes in canine cortical and cancellous bone mechanical properties following immobilization and remobilization with exercise

被引:68
作者
Kaneps, AJ
Stover, SM
Lane, NE
机构
[1] UNIV CALIF DAVIS,SCH VET MED,DEPT ANAT PHYSIOL & CELL BIOL,VET ORTHOPAED RES LAB,DAVIS,CA
[2] UNIV CALIF SAN FRANCISCO,SCH MED,DEPT RHEUMATOL,ROSSALIND RUSSELL ARTHRIT RES LAB,SAN FRANCISCO,CA
基金
美国国家航空航天局;
关键词
bone; cortical; cancellous; biomechanics; immobilization; remobilization; canine;
D O I
10.1016/S8756-3282(97)00167-1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The purpose of this study was to assess cortical and cancellous bone responses to unilateral limb immobilization and, subsequently, to remobilization with exercise, in a young adult canine model. Right forelimbs of 14 1-2-year old mongrel dogs were immobilized in a non-weight-bearing position by a bandage for 16 weeks. Six control dogs were untreated. At 16 weeks, seven immobilized and three control dogs were euthanized. The remaining seven immobilized dogs began a recovery protocol consisting of 16 weeks of kennel confinement (without the right forelimb bandaged) followed by 16 weeks of treadmill exercise conducted three times per week. These seven dogs and three control does were euthanized at 48 weeks. Bone mineral density of the proximal radii was determined with dual-energy X-ray absorptiometry and humeral middiaphyseal cross-sectional areas were determined with computed tomography. Humeri were tested in craniocaudal three-point bending to failure. Cancellous bone cores from the lateral humeral condyles had wet apparent density determined and were tested to failure in compression. Mechanical properties, bone density, and cross-sectional areas were compared between immobilized (right forelimb), contralateral weight bearing (left forelimb), and control forelimbs with Kruskal-Wallis and post hoc tests. At 16 weeks, bone mineral density, cortical load, yield, and stiffness as well as cancellous bone failure stress, yield stress, and modulus were significantly lower (p < 0.02) for immobilized limbs than control limbs. Immobilized limb cancellous bone mechanical properties were 28%-74% of control values, and cortical bone mechanical properties were 71%-98% of control values. After 32 weeks of remobilization, cortical and cancellous bone mechanical properties were not different from control values except that cortical bone failure stress and modulus were significantly higher (p < 0.01) between remobilized and control limbs. In summary, 16 weeks of forelimb immobilization was associated with significantly lower mechanical properties, and with greater differences in cancellous than cortical bone properties. Mechanical properties were not different from control values after 32 weeks of recovery that included 16 weeks of treadmill exercise. (C) 1997 by Elsevier Science Inc. All rights reserved.
引用
收藏
页码:419 / 423
页数:5
相关论文
共 26 条
[1]  
FROST HM, 1992, J BONE MINER RES, V7, P253
[2]  
FROST HM, 1986, INTERMEDIARY ORG SKE, V1, P267
[3]  
GLANTZ SA, 1992, PRIMER BIOSTATISTICS, P278
[5]   THE EFFECT OF PAMIDRONATE IN A NEW MODEL OF IMMOBILIZATION IN THE DOG [J].
GRYNPAS, MD ;
KASRA, M ;
RENLUND, R ;
PRITZKER, KPH .
BONE, 1995, 17 (04) :S225-S232
[6]   REMOBILIZATION PARTIALLY RESTORED THE BONE MASS IN A NONGROWING CANCELLOUS BONE SITE FOLLOWING LONG-TERM IMMOBILIZATION [J].
IJIRI, K ;
JEE, WSS ;
MA, YF ;
YUAN, Z .
BONE, 1995, 17 (04) :S213-S217
[7]   EFFECT OF LONG-TERM IMMOBILIZATION ON THE PATTERN OF BONE LOSS IN OLDER DOGS [J].
JAWORSKI, ZFG ;
LISKOVAKIAR, M ;
UHTHOFF, HK .
JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME, 1980, 62 (01) :104-110
[8]   REVERSIBILITY OF NONTRAUMATIC DISUSE OSTEOPOROSIS DURING ITS ACTIVE PHASE [J].
JAWORSKI, ZFG ;
UHTHOFF, HK .
BONE, 1986, 7 (06) :431-439
[9]  
LANE N, 1990, J BONE MINER RES, V5, P1029
[10]   Bone mineral density and turnover following forelimb immobilization and recovery in young adult dogs [J].
Lane, NE ;
Kaneps, AJ ;
Stover, SM ;
Modin, G ;
Kimmel, DB .
CALCIFIED TISSUE INTERNATIONAL, 1996, 59 (05) :401-406