m-systems of polar spaces and maximal arcs in projective planes

被引:11
作者
Hamilton, N [1 ]
Quinn, CT
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] Univ Adelaide, Dept Pure Math, Adelaide, SA 5005, Australia
关键词
polar space; m-system; maximal arc; quadric; strongly regular graph;
D O I
10.36045/bbms/1103055688
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Shult and Thas have shown in [13] that m-systems of certain finite classical polar spaces give rise to strongly regular graphs and two weight codes. The main result of this paper is to show that maximal arcs in symplectic translation planes may be obtained from certain m-systems of finite symplectic polar spaces. Many new examples of maximal arcs are then constructed. Examples of m-systems are also constructed in Q(-)(2n + 1,q) and W2n+1(q). A method different from that of Shult and Thas is used to construct strongly regular graphs using "differences" of m-systems.
引用
收藏
页码:237 / 248
页数:12
相关论文
共 16 条
[1]   Maximal arcs in Desarguesian planes of odd order do not exist [J].
Ball, S ;
Blokhuis, A ;
Mazzocca, F .
COMBINATORICA, 1997, 17 (01) :31-41
[2]   On the non-existence of Thas maximal arcs in odd order projective planes [J].
Blokhuis, A ;
Hamilton, N ;
Wilbrink, H .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (04) :413-417
[3]   LINEAR REPRESENTATIONS OF PROJECTIVE PLANES IN PROJECTIVE SPACES [J].
BRUCK, RH .
JOURNAL OF ALGEBRA, 1966, 4 (01) :117-&
[4]  
Denniston R. H. F., 1969, J. Combin. Theory, V6, P317, DOI DOI 10.1016/S0021-9800(69)80095-5
[5]  
Dye RH., 1977, Ann. Mat. Pura Appl, V114, P173, DOI DOI 10.1007/BF02413785
[6]   SOME INHERITED MAXIMAL ARCS IN DERIVED DUAL TRANSLATION-PLANES [J].
HAMILTON, N .
GEOMETRIAE DEDICATA, 1995, 55 (02) :165-173
[7]  
Hirschfeld JWP., 1985, FINITE PROJECTIVE SP
[8]  
Hirschfeld JWP., 1979, PROJECTIVE GEOMETRIE
[9]  
Hirschfeld JWP, 1991, GEN GALOIS GEOMETRIE
[10]   SPREADS, TRANSLATION-PLANES AND KERDOCK SETS .1. [J].
KANTOR, WM .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (02) :151-165