Study of Lithium Dynamics in Monoclinic Li3Fe2(PO4)3 using 6Li VT and 2D Exchange MAS NMR Spectroscopy

被引:50
作者
Davis, L. J. M. [1 ,2 ]
Heinmaa, I. [3 ]
Goward, G. R. [1 ,2 ]
机构
[1] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
[2] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada
[3] NICPB, EE-12618 Tallinn, Estonia
关键词
ION BATTERIES; CATHODE MATERIALS; LI3V2(PO4)(3); PHASE; TEMPERATURE; CONDUCTORS; CAPACITY; LIMN2O4; ECHO;
D O I
10.1021/cm901402u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Details of Li-mobility in Li3Fe2(PO4)(3) are elucidated using solid-state Li-6 NMR. Three crystallographically unique Li sites were resolved under magic angle spinning (25 kHz) with paramagnetic shifts arising at 45 ppm, 102 ppm, and 216 ppm. These resonances were assigned to the crystallographic positions based on the degree of the Fermi-contact interaction with the paramagnetic iron center. Li-6 2D exchange NMR experiments were performed under variable temperature conditions in order to determine the activation energies for hopping between lithium sites. Activation energies ranged from 0.59 (+/- 0.05) eV to 0.81 (+/- 0.04) eV, where shorter Li internuclear distances and larger Li-O bottlenecks yielded lower activation energies. These results were compared to it previous study on the isostructural Li3V2(PO4)(3), which showed similar trends of increased internuclear distance (and constricted bottlenecks) yielding larger energy barriers for Li-Li exchange. Overall, the average activation energy for lithium ion hopping in the iron-based structure is lower than the vanadium analogue, which is attributed to the more open framework of the former.
引用
收藏
页码:769 / 775
页数:7
相关论文
共 27 条
[1]   SUPERIONIC CONDUCTORS LI3FE2(PO4)3, LI3SC2(PO4)3, LI3CR2(PO4)3 - SYNTHESIS, STRUCTURE AND ELECTROPHYSICAL PROPERTIES [J].
BYKOV, AB ;
CHIRKIN, AP ;
DEMYANETS, LN ;
DORONIN, SN ;
GENKINA, EA ;
IVANOVSHITS, AK ;
KONDRATYUK, IP ;
MAKSIMOV, BA ;
MELNIKOV, OK ;
MURADYAN, LN ;
SIMONOV, VI ;
TIMOFEEVA, VA .
SOLID STATE IONICS, 1990, 38 (1-2) :31-52
[2]   6Li{31P} rotational-echo, double-resonance studies of lithium ion site dynamics in Li3V2(PO4)3 [J].
Cahill, L. S. ;
Kirby, C. W. ;
Goward, G. R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (06) :2215-2221
[3]   7Li NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)3 [J].
Cahill, LS ;
Chapman, RP ;
Britten, JF ;
Goward, GR .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (14) :7171-7177
[4]  
CAHILL LS, 2008, THESIS MCMASTER U HA
[5]   Identification of cathode materials for lithium batteries guided by first-principles calculations [J].
Ceder, G ;
Chiang, YM ;
Sadoway, DR ;
Aydinol, MK ;
Jang, YI ;
Huang, B .
NATURE, 1998, 392 (6677) :694-696
[6]   NMR studies of cathode materials for lithium-ion rechargeable batteries [J].
Grey, CP ;
Dupré, N .
CHEMICAL REVIEWS, 2004, 104 (10) :4493-4512
[7]   Lithium MAS NMR studies of cathode materials for lithium-ion batteries [J].
Grey, CP ;
Lee, YJ .
SOLID STATE SCIENCES, 2003, 5 (06) :883-894
[8]  
Huang H, 2002, ADV MATER, V14, P1525, DOI 10.1002/1521-4095(20021104)14:21<1525::AID-ADMA1525>3.0.CO
[9]  
2-3
[10]   INVESTIGATION OF EXCHANGE PROCESSES BY 2-DIMENSIONAL NMR-SPECTROSCOPY [J].
JEENER, J ;
MEIER, BH ;
BACHMANN, P ;
ERNST, RR .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (11) :4546-4553