Substrate Binding Mechanism of HIV-1 Protease from Explicit-Solvent Atomistic Simulations

被引:117
作者
Pietrucci, Fabio [1 ]
Marinelli, Fabrizio [1 ]
Carloni, Paolo [1 ]
Laio, Alessandro [1 ]
机构
[1] SISSA, Int Sch Adv Studies, Via Beirut 2-4, I-34014 Trieste, Italy
关键词
HUMAN-IMMUNODEFICIENCY-VIRUS; FREE-ENERGY LANDSCAPE; PARTICLE MESH EWALD; MOLECULAR-DYNAMICS; INHIBITORS; RESISTANCE; FLEXIBILITY; RECOGNITION; COMPLEX; WATER;
D O I
10.1021/ja903045y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The binding mechanism of a peptide substrate (Thr-lle-Met-Met-Gln-Arg, cleavage site p2-NC of the viral polyprotein) to wild-type HIV-1 protease has been investigated by 1.6 mu s biased all-atom molecular dynamics simulations in explicit water. The configuration space has been explored biasing seven reaction coordinates by the bias-exchange metadynamics technique. The structure of the Michaelis complex is obtained starting from the substrate outside the enzyme within a backbone rmsd of 0.9 angstrom. The calculated free energy of binding is -6 kcal/mol, and the kinetic constants for association and dissociation are 1.3 x 10(6) M-1 s(-1) and 57 s(-1), respectively, consistent with experiments. In the main binding pathway, the flaps of the protease do not open sizably. The substrate slides inside the enzyme cavity from the tight lateral channel. This may contrast with the natural polyprotein substrate which is expected to bind by opening the flaps. Thus, mutations might influence differently the binding kinetics of peptidomimetic ligands and of the natural substrate.
引用
收藏
页码:11811 / 11818
页数:8
相关论文
共 64 条
[11]   Transition Path Sampling and Other Advanced Simulation Techniques for Rare Events [J].
Dellago, Christoph ;
Bolhuis, Peter G. .
ADVANCED COMPUTER SIMULATION APPROACHES FOR SOFT MATTER SCIENCES III, 2009, 221 :167-233
[12]   A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations [J].
Duan, Y ;
Wu, C ;
Chowdhury, S ;
Lee, MC ;
Xiong, GM ;
Zhang, W ;
Yang, R ;
Cieplak, P ;
Luo, R ;
Lee, T ;
Caldwell, J ;
Wang, JM ;
Kollman, P .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (16) :1999-2012
[13]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[14]   Using metadynamics to understand the mechanism of calmodulin/target recognition at atomic detail [J].
Fiorin, G. ;
Pastore, A. ;
Carloni, P. ;
Parrinello, M. .
BIOPHYSICAL JOURNAL, 2006, 91 (08) :2768-2777
[15]   2-STEP BINDING MECHANISM FOR HIV PROTEASE INHIBITORS [J].
FURFINE, ES ;
DSOUZA, E ;
INGOLD, KJ ;
LEBAN, JJ ;
SPECTOR, T ;
PORTER, DJT .
BIOCHEMISTRY, 1992, 31 (34) :7886-7891
[16]   Flexible docking in solution using metadynamics [J].
Gervasio, FL ;
Laio, A ;
Parrinello, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (08) :2600-2607
[17]   Complex network analysis of free-energy landscapes [J].
Gfeller, D. ;
De Los Rios, P. ;
Caflisch, A. ;
Rao, F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (06) :1817-1822
[18]   The statistical-thermodynamic basis for computation of binding affinities: A critical review [J].
Gilson, MK ;
Given, JA ;
Bush, BL ;
McCammon, JA .
BIOPHYSICAL JOURNAL, 1997, 72 (03) :1047-1069
[19]   Standard free energy of releasing a localized water molecule from the binding pockets of proteins: Double-decoupling method [J].
Hamelberg, D ;
McCammon, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (24) :7683-7689
[20]  
Hess B, 1997, J COMPUT CHEM, V18, P1463, DOI 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO