Likelihood moment estimation for the generalized pareto distribution

被引:74
作者
Zhang, Jin [1 ]
机构
[1] Univ Manitoba, Dept Stat, Winnipeg, MB R3T 2N2, Canada
关键词
asymptotic efficiency; maximum likelihood estimation; moment estimation; probability-weighted moment;
D O I
10.1111/j.1467-842X.2006.00464.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Traditional methods for estimating parameters in the generalized Pareto distribution have theoretical and computational defects. The moment estimator and the probability-weighted moment estimator have low asymptotic efficiencies. They may not exist or may give nonsensical estimates. The maximum likelihood estimator, which sometimes does not exist, is asymptotically efficient, but its computation is complex and has convergence problems. The likelihood moment estimator is proposed, which is computationally easy and has high asymptotic efficiency.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 22 条
[11]   PARAMETER AND QUANTILE ESTIMATION FOR THE GENERALIZED PARETO DISTRIBUTION [J].
HOSKING, JRM ;
WALLIS, JR .
TECHNOMETRICS, 1987, 29 (03) :339-349
[12]   ESTIMATION OF THE GENERALIZED EXTREME-VALUE DISTRIBUTION BY THE METHOD OF PROBABILITY-WEIGHTED MOMENTS [J].
HOSKING, JRM ;
WALLIS, JR ;
WOOD, EF .
TECHNOMETRICS, 1985, 27 (03) :251-261
[13]   TESTING WHETHER THE SHAPE PARAMETER IS ZERO IN THE GENERALIZED EXTREME-VALUE DISTRIBUTION [J].
HOSKING, JRM .
BIOMETRIKA, 1984, 71 (02) :367-374
[14]  
Hosking JRM, 1985, APPL STAT-J ROY ST C, V34, P301
[16]  
PICKANDS J, 1975, ANN STAT, V3, P119
[17]  
PRESCOTT P, 1980, BIOMETRIKA, V67, P723
[18]  
Smith R.L., 1989, STAT SCI, V4, P367, DOI DOI 10.1214/SS/1177012400
[19]  
Smith R. L, 1990, HDB APPL MATH, V7
[20]  
Smith Richard L, 1984, STAT EXTREMES APPL, P621, DOI DOI 10.1007/978-94-017-3069-3_48