The insulation of genes from external enhancers and silencing chromatin

被引:205
作者
Burgess-Beusse, B [1 ]
Farrell, C [1 ]
Gaszner, M [1 ]
Litt, M [1 ]
Mutskov, V [1 ]
Recillas-Targa, F [1 ]
Simpson, M [1 ]
West, A [1 ]
Felsenfeld, G [1 ]
机构
[1] NIDDKD, Mol Biol Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1073/pnas.162342499
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Insulators are DNA sequence elements that can serve in some cases as barriers to protect a gene against the encroachment of adjacent inactive condensed chromatin. Some insulators also can act as blocking elements to protect against the activating influence of distal enhancers associated with other genes. Although most of the insulators identified so far derive from Drosophila, they also are found in vertebrates. An insulator at the 5' end of the chicken beta-globin locus marks a boundary between an open chromatin domain and a region of constitutively condensed chromatin. Detailed analysis of this element shows that it possesses both enhancer blocking activity and the ability to screen reporter genes against position effects. Enhancer blocking is associated with binding of the protein CTCF; sites that bind CTCF are found at other critical points in the genome. Protection against position effects involves other properties that appear to be associated with control of histone acetylation and methylation. Insulators thus are complex elements that can help to preserve the independent function of genes embedded in a genome in which they are surrounded by regulatory signals they must ignore.
引用
收藏
页码:16433 / 16437
页数:5
相关论文
共 23 条
[1]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[2]   The protein CTCF is required for the enhancer blocking activity of vertebrate insulators [J].
Bell, AC ;
West, AG ;
Felsenfeld, G .
CELL, 1999, 98 (03) :387-396
[3]   Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene [J].
Bell, AC ;
Felsenfeld, G .
NATURE, 2000, 405 (6785) :482-485
[4]   Conservation of sequence and structure flanking the mouse and human β-globin loci:: The β-globin genes are embedded within an array of odorant receptor genes [J].
Bulger, M ;
von Doorninck, JH ;
Saitoh, N ;
Telling, A ;
Farrell, C ;
Bender, MA ;
Felsenfeld, G ;
Axel, R ;
Groudine, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (09) :5129-5134
[5]   CTCF, a candidate trans-acting factor for X-inactivation choice [J].
Chao, W ;
Huynh, KD ;
Spencer, RJ ;
Davidow, LS ;
Lee, JT .
SCIENCE, 2002, 295 (5553) :345-347
[6]   Characterization of the chicken beta-globin insulator [J].
Chung, JH ;
Bell, AC ;
Felsenfeld, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (02) :575-580
[7]   A 5' ELEMENT OF THE CHICKEN BETA-GLOBIN DOMAIN SERVES AS AN INSULATOR IN HUMAN ERYTHROID-CELLS AND PROTECTS AGAINST POSITION EFFECT IN DROSOPHILA [J].
CHUNG, JH ;
WHITELEY, M ;
FELSENFELD, G .
CELL, 1993, 74 (03) :505-514
[8]   RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae [J].
Donze, D ;
Kamakaka, RT .
EMBO JOURNAL, 2001, 20 (03) :520-531
[9]   Conserved CTCF insulator elements flank the mouse and human β-globin loci [J].
Farrell, CM ;
West, AG ;
Felsenfeld, G .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (11) :3820-3831
[10]   CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus [J].
Hark, AT ;
Schoenherr, CJ ;
Katz, DJ ;
Ingram, RS ;
Levorse, JM ;
Tilghman, SM .
NATURE, 2000, 405 (6785) :486-489