Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning

被引:223
作者
Roberts, Todd F. [1 ]
Tschida, Katherine A. [1 ]
Klein, Marguerita E. [1 ]
Mooney, Richard [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
LONG-TERM POTENTIATION; DENDRITIC SPINES; IN-VIVO; ZEBRA FINCH; SONG; NEURONS; CORTEX; PLASTICITY; DEPRIVATION; INTEGRATION;
D O I
10.1038/nature08759
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Behavioural learning depends on the brain's capacity to respond to instructive experience and is often enhanced during a juvenile sensitive period. How instructive experience acts on the juvenile brain to trigger behavioural learning remains unknown. In vitro studies show that forms of synaptic strengthening thought to underlie learning are accompanied by an increase in the stability, number and size of dendritic spines, which are the major sites of excitatory synaptic transmission in the vertebrate brain(1-7). In vivo imaging studies in sensory cortical regions reveal that these structural features can be affected by disrupting sensory experience and that spine turnover increases during sensitive periods for sensory map formation(8-12). These observations support two hypotheses: first, the increased capacity for behavioural learning during a sensitive period is associated with enhanced spine dynamics on sensorimotor neurons important for the learned behaviour; second, instructive experience rapidly stabilizes and strengthens these dynamic spines. Here we report a test of these hypotheses using two-photon in vivo imaging to measure spine dynamics in zebra finches, which learn to sing by imitating a tutor song during a juvenile sensitive period(13,14). Spine dynamics were measured in the forebrain nucleus HVC, the proximal site where auditory information merges with an explicit song motor representation(15-19), immediately before and after juvenile finches first experienced tutor song(20). Higher levels of spine turnover before tutoring correlated with a greater capacity for subsequent song imitation. In juveniles with high levels of spine turnover, hearing a tutor song led to the rapid (similar to 24-h) stabilization, accumulation and enlargement of dendritic spines in HVC. Moreover, in vivo intracellular recordings made immediately before and after the first day of tutoring revealed robust enhancement of synaptic activity in HVC. These findings suggest that behavioural learning results when instructive experience is able to rapidly stabilize and strengthen synapses on sensorimotor neurons important for the control of the learned behaviour.
引用
收藏
页码:948 / U123
页数:6
相关论文
共 29 条
[1]   Anatomical and physiological plasticity of dendritic spines [J].
Alvarez, Veronica A. ;
Sabatini, Bernardo L. .
ANNUAL REVIEW OF NEUROSCIENCE, 2007, 30 :79-97
[2]   A synaptic basis for auditory-vocal integration in the songbird [J].
Bauer, Eric E. ;
Coleman, Melissa J. ;
Roberts, Todd F. ;
Roy, Arani ;
Prather, Jonathan F. ;
Mooney, Richard .
JOURNAL OF NEUROSCIENCE, 2008, 28 (06) :1509-1522
[3]   Cortical rewiring and information storage [J].
Chklovskii, DB ;
Mel, BW ;
Svoboda, K .
NATURE, 2004, 431 (7010) :782-788
[4]   LTP promotes a selective long-term stabilization and clustering of dendritic spines [J].
De Roo, Mathias ;
Klauser, Paul ;
Muller, Dominique .
PLOS BIOLOGY, 2008, 6 (09) :1850-1860
[5]   How sleep affects the developmental learning of bird song [J].
Derégnaucourt, S ;
Mitra, PP ;
Fehér, O ;
Pytte, C ;
Tchernichovski, O .
NATURE, 2005, 433 (7027) :710-716
[6]   Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo [J].
Dittgen, T ;
Nimmerjahn, A ;
Komai, S ;
Licznerski, P ;
Waters, J ;
Margrie, TW ;
Helmchen, F ;
Denk, W ;
Brecht, M ;
Osten, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (52) :18206-18211
[7]   SONG LEARNING IN ZEBRA FINCHES - SOME EFFECTS OF SONG MODEL AVAILABILITY ON WHAT IS LEARNT AND WHEN [J].
EALES, LA .
ANIMAL BEHAVIOUR, 1985, 33 (NOV) :1293-1300
[8]   Dendritic spine changes associated with hippocampal long-term synaptic plasticity [J].
Engert, F ;
Bonhoeffer, T .
NATURE, 1999, 399 (6731) :66-70
[9]   An ultra-sparse code underlies the generation of neural sequences in a songbird [J].
Hahnloser, RHR ;
Kozhevnikov, AA ;
Fee, MS .
NATURE, 2002, 419 (6902) :65-70
[10]   Experience leaves a lasting structural trace in cortical circuits [J].
Hofer, Sonja B. ;
Mrsic-Flogel, Thomas D. ;
Bonhoeffer, Tobias ;
Huebener, Mark .
NATURE, 2009, 457 (7227) :313-U4