The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron

被引:52
作者
Chen, Q
Babuska, I
机构
[1] SACHS FREEMAN ASSOCIATES INC,LANDOVER,MD 20785
[2] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
关键词
D O I
10.1016/0045-7825(96)01051-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main result of this paper is the computation of the mean optimal symmetrical interpolation points in the tetrahedron up to degree 9. This interpoation set has the smallest Lebesgue constant known today.
引用
收藏
页码:89 / 94
页数:6
相关论文
共 7 条
[1]  
Bernardi Christine., 1992, APPROXIMATIONS SPECT
[3]   Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle [J].
Chen, Q ;
Babuska, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 128 (3-4) :405-417
[4]   LATTICES ADMITTING UNIQUE LAGRANGE INTERPOLATIONS [J].
CHUNG, KC ;
YAO, TH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (04) :735-743
[5]  
Hughes TJR., 1987, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
[6]  
SENDOV B, 1994, HDB NUMERICAL ANAL, V3, P223
[7]  
Szabo B., 1991, Finite Element Analysis