3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer

被引:134
作者
Asmann, Yan W. [1 ]
Klee, Eric W. [1 ]
Thompson, E. Aubrey [2 ]
Perez, Edith A. [2 ]
Middha, Sumit [1 ]
Oberg, Ann L. [1 ]
Therneau, Terry M. [1 ]
Smith, David I. [3 ]
Poland, Gregory A. [4 ]
Wieben, Eric D. [5 ]
Kocher, Jean-Pierre A. [1 ]
机构
[1] Mayo Clin, Div Biomed Stat & Informat, Dept Hlth Sci Res, Rochester, MN 55905 USA
[2] Mayo Clin, Mayo Clin Comprehens Canc Ctr, Dept Canc Biol, Jacksonville, FL 32224 USA
[3] Mayo Clin, Div Expt Pathol, Dept Lab Med & Pathol, Rochester, MN 55905 USA
[4] Mayo Clin, Mayo Vaccine Res Grp, Program Translat Immunovirol & Biodef, Dept Med, Rochester, MN 55905 USA
[5] Mayo Clin, Adv Genom Technol Ctr DNA Sequencing Lab, Mayo Clin Coll Med, Rochester, MN 55905 USA
来源
BMC GENOMICS | 2009年 / 10卷
关键词
SEQUENCING TECHNOLOGY; DNA MICROARRAY; TRANSCRIPTOME; PATTERNS; ARRAYS;
D O I
10.1186/1471-2164-10-531
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Massive parallel sequencing has the potential to replace microarrays as the method for transcriptome profiling. Currently there are two protocols: full-length RNA sequencing (RNA-SEQ) and 3'-tag digital gene expression (DGE). In this preliminary effort, we evaluated the 3' DGE approach using two reference RNA samples from the MicroArray Quality Control Consortium (MAQC). Results: Using Brain RNA sample from multiple runs, we demonstrated that the transcript profiles from 3' DGE were highly reproducible between technical and biological replicates from libraries constructed by the same lab and even by different labs, and between two generations of Illumina's Genome Analyzers. Approximately 65% of all sequence reads mapped to mitochondrial genes, ribosomal RNAs, and canonical transcripts. The expression profiles of brain RNA and universal human reference RNA were compared which demonstrated that DGE was also highly quantitative with excellent correlation of differential expression with quantitative real-time PCR. Furthermore, one lane of 3' DGE sequencing, using the current sequencing chemistry and image processing software, had wider dynamic range for transcriptome profiling and was able to detect lower expressed genes which are normally below the detection threshold of microarrays. Conclusion: 3' tag DGE profiling with massive parallel sequencing achieved high sensitivity and reproducibility for transcriptome profiling. Although it lacks the ability of detecting alternative splicing events compared to RNA-SEQ, it is much more affordable and clearly out-performed microarrays (Affymetrix) in detecting lower abundant transcripts.
引用
收藏
页数:11
相关论文
共 20 条
  • [1] ADAMS MD, 1995, NATURE, V377, P3
  • [2] Transcriptome Profiling Using Next-Generation Sequencing
    Asmann, Yan W.
    Wallace, Michael B.
    Thompson, E. Aubrey
    [J]. GASTROENTEROLOGY, 2008, 135 (05) : 1466 - 1468
  • [3] GENE DISCOVERY IN DBEST
    BOGUSKI, MS
    TOLSTOSHEV, CM
    BASSETT, DE
    [J]. SCIENCE, 1994, 265 (5181) : 1993 - 1994
  • [4] Evaluation of DNA microarray results with quantitative gene expression platforms
    Canales, Roger D.
    Luo, Yuling
    Willey, James C.
    Austermiller, Bradley
    Barbacioru, Catalin C.
    Boysen, Cecilie
    Hunkapiller, Kathryn
    Jensen, Roderick V.
    Knight, Charles R.
    Lee, Kathleen Y.
    Ma, Yunqing
    Maqsodi, Botoul
    Papallo, Adam
    Peters, Elizabeth Herness
    Poulter, Karen
    Ruppel, Patricia L.
    Samaha, Raymond R.
    Shi, Leming
    Yang, Wen
    Zhang, Lu
    Goodsaid, Federico M.
    [J]. NATURE BIOTECHNOLOGY, 2006, 24 (09) : 1115 - 1122
  • [5] Stem cell transcriptome profiling via massive-scale mRNA sequencing
    Cloonan, Nicole
    Forrest, Alistair R. R.
    Kolle, Gabriel
    Gardiner, Brooke B. A.
    Faulkner, Geoffrey J.
    Brown, Mellissa K.
    Taylor, Darrin F.
    Steptoe, Anita L.
    Wani, Shivangi
    Bethel, Graeme
    Robertson, Alan J.
    Perkins, Andrew C.
    Bruce, Stephen J.
    Lee, Clarence C.
    Ranade, Swati S.
    Peckham, Heather E.
    Manning, Jonathan M.
    McKernan, Kevin J.
    Grimmond, Sean M.
    [J]. NATURE METHODS, 2008, 5 (07) : 613 - 619
  • [6] Expression monitoring by hybridization to high-density oligonucleotide arrays
    Lockhart, DJ
    Dong, HL
    Byrne, MC
    Follettie, MT
    Gallo, MV
    Chee, MS
    Mittmann, M
    Wang, CW
    Kobayashi, M
    Horton, H
    Brown, EL
    [J]. NATURE BIOTECHNOLOGY, 1996, 14 (13) : 1675 - 1680
  • [7] Transcriptome sequencing to detect gene fusions in cancer
    Maher, Christopher A.
    Kumar-Sinha, Chandan
    Cao, Xuhong
    Kalyana-Sundaram, Shanker
    Han, Bo
    Jing, Xiaojun
    Sam, Lee
    Barrette, Terrence
    Palanisamy, Nallasivam
    Chinnaiyan, Arul M.
    [J]. NATURE, 2009, 458 (7234) : 97 - U9
  • [8] Transcriptome sequencing of the Microarray Quality Control (MAQC) RNA reference samples using next generation sequencing
    Mane, Shrinivasrao P.
    Evans, Clive
    Cooper, Kristal L.
    Crasta, Oswald R.
    Folkerts, Otto
    Hutchison, Stephen K.
    Harkins, Timothy T.
    Thierry-Mieg, Danielle
    Thierry-Mieg, Jean
    Jensen, Roderick V.
    [J]. BMC GENOMICS, 2009, 10
  • [9] Next-generation DNA sequencing methods
    Mardis, Elaine R.
    [J]. ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2008, 9 : 387 - 402
  • [10] The impact of next-generation sequencing technology on genetics
    Mardis, Elaine R.
    [J]. TRENDS IN GENETICS, 2008, 24 (03) : 133 - 141