Pico: Parameters for the impatient cosmologist

被引:81
作者
Fendt, William A.
Wandelt, Benjamin D.
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[3] Univ Illinois, Ctr Adv Studies, Urbana, IL 61801 USA
关键词
cosmic microwave background; cosmology : observations; methods : numerical;
D O I
10.1086/508342
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a fast, accurate, robust, and flexible method of accelerating parameter estimation. This algorithm, called Pico, can compute the CMB power spectrum and matter transfer function, as well as any computationally expensive likelihoods, in a few milliseconds. By removing these bottlenecks from parameter estimation codes, Pico decreases their computational time by 1 or 2 orders of magnitude. Pico has several important properties. First, it is extremely fast and accurate over a large volume of parameter space. Furthermore, its accuracy can continue to be improved by using a larger training set. This method is generalizable to an arbitrary number of cosmological parameters and to any range of l-values in multipole space. Pico is approximately 3000 times faster than CAMB for flat models, and approximately 2000 times faster than the WMAP 3 yr likelihood code. In this paper, we demonstrate that using Pico to compute power spectra and likelihoods produces parameter posteriors that are very similar to those using CAMB and the official WMAP3 code, but in only a fraction of the time. Pico and an interface to CosmoMC are made publicly available on the authors' Web site at http:// www. astro. uiuc. edu/similar to bwandelt/pico/.
引用
收藏
页码:2 / 11
页数:10
相关论文
共 30 条
[11]   Constraining inflation with cosmic microwave background polarization [J].
Kinney, WH .
PHYSICAL REVIEW D, 1998, 58 (12)
[12]  
Kirby M., 2001, Geometric Data Analysis: An empirical Approach to Dimensionality Reduction and the Study of Patterns, V31
[13]   First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations:: Temperature-polarization correlation [J].
Kogut, A ;
Spergel, DN ;
Barnes, C ;
Bennett, CL ;
Halpern, M ;
Hinshaw, G ;
Jarosik, N ;
Limon, M ;
Meyer, SS ;
Page, L ;
Tucker, GS ;
Wollack, E ;
Wright, EL .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2003, 148 (01) :161-173
[14]   Efficient cosmological parameter estimation from microwave background anisotropies [J].
Kosowsky, A ;
Milosavljevic, M ;
Jimenez, R .
PHYSICAL REVIEW D, 2002, 66 (06)
[15]   High-resolution observations of the cosmic microwave background power spectrum with ACBAR [J].
Kuo, CL ;
Ade, PAR ;
Bock, JJ ;
Cantalupo, C ;
Daub, MD ;
Goldstein, J ;
Holzapfel, WL ;
Lange, AE ;
Lueker, M ;
Newcomb, M ;
Peterson, JB ;
Ruhl, J ;
Runyan, MC ;
Torbet, E .
ASTROPHYSICAL JOURNAL, 2004, 600 (01) :32-51
[16]   Efficient computation of cosmic microwave background anisotropies in closed Friedmann-Robertson-Walker models [J].
Lewis, A ;
Challinor, A ;
Lasenby, A .
ASTROPHYSICAL JOURNAL, 2000, 538 (02) :473-476
[17]   Cosmological parameters from CMB and other data: A Monte Carlo approach [J].
Lewis, A ;
Bridle, S .
PHYSICAL REVIEW D, 2002, 66 (10)
[18]  
Loeve M, 1955, PROBABILITY THEORY
[19]  
MacQueen J., 1967, Proc fifth Berkeley Symp Math Stat Probab, V1, P281
[20]   A measurement of the angular power spectrum of the cosmic microwave background from l=100 to 400 [J].
Miller, AD ;
Caldwell, R ;
Devlin, MJ ;
Dorwart, WB ;
Herbig, T ;
Nolta, MR ;
Page, LA ;
Puchalla, J ;
Torbet, E ;
Tran, HT .
ASTROPHYSICAL JOURNAL, 1999, 524 (01) :L1-L4