The indent reflow sealing (IRS) technique - A method for the fabrication of sealed cavities for MEMS devices

被引:75
作者
Tilmans, HAC [1 ]
Van de Peer, MDJ [1 ]
Beyne, E [1 ]
机构
[1] CP Clare NV, B-3500 Hasselt, Belgium
关键词
flip-chip bonding; fluxless solder bond; hermetically; sealed cavity; MEMS packaging; metallic seal; microrelay;
D O I
10.1109/84.846701
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A variety of microelectromechanical system devices requires encapsulation of their crucial fragile parts in a hermetically sealed cavity for reasons of protection. Hermeticity of the cavity and controllability of the ambient (gas pressure and gas composition) can be critical to the device performance, In order to minimize damage during handling, the cavity is preferably realized at the same time the device is fabricated, i.e., at wafer level. This paper reports the development of a hermetic packaging technique satisfying all the above. The method is referred to as the indent-reflow-sealing (IRS) technique, which relies on a multiple-chip fluxless solder-based joining technique and seal. Key process steps are the creation of an indent in the solder, the plasma pretreatment of the bonding surfaces, the pre-bonding (or sticking) of the chips and, the closing of the indent during a low-temperature (220 degrees C-350 degrees C) solder reflow in a clean controlled ambient using a designated oven. As opposed to other methods, the IRS method allows a greater flexibility with respect to the choice of the sealing gas and pressure, thereby offering a very hermetic seal and compatibility with low-cost high-throughput batch fabrication techniques. Flip-chip assemblies based on SnPb (67/37) solder and Au as the top surface metallization, have been reflowed in a forming gas ambient and have next been characterized on shear strength, hermeticity, and susceptibility to thermal stresses. The method has been successfully implemented in the process flow of an electromagnetic microrelay for the realization of the cavity housing the electrical contacts.
引用
收藏
页码:206 / 217
页数:12
相关论文
共 44 条
[1]  
ANDO D, P IEEE MEMS 97 NAG, P186
[2]   Vacuum sealing of microcavities using metal evaporation [J].
Bartek, R ;
Foerster, JA ;
Wolffenbuttel, RF .
SENSORS AND ACTUATORS A-PHYSICAL, 1997, 61 (1-3) :364-368
[3]  
Busta H. H., 1992, Journal of Micromechanics and Microengineering, V2, P43, DOI 10.1088/0960-1317/2/2/001
[4]  
CAILLAT P, 1994, 1 INT FLIP CHIOP S F
[5]  
COHN MB, 1996, P IEEE SOL STAT SENS, P32
[6]  
CORE TA, 1993, SOLID STATE TECH OCT, P39
[7]  
DEMOOR P, 1999, P 2 INT INT MICR SPA, P43
[8]   SPIN DEPOSITION OF POLYMERS OVER HOLES AND CAVITIES [J].
ELDERSTIG, H ;
WALLGREN, P .
SENSORS AND ACTUATORS A-PHYSICAL, 1995, 46 (1-3) :95-97
[9]  
ESTES RH, GB31
[10]  
FUJITA T, 1999, P 10 INT C SOL STAT, P914