Percolation thresholds on two-dimensional Voronoi networks and Delaunay triangulations

被引:44
作者
Becker, Adam M. [1 ]
Ziff, Robert M. [2 ,3 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
computational geometry; mesh generation; Monte Carlo methods; percolation; random processes; SITE PERCOLATION; CRITICAL PROBABILITY; BOND; TESSELLATIONS; ALGORITHMS; LATTICES; MODEL; SIZE;
D O I
10.1103/PhysRevE.80.041101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The site percolation threshold for the random Voronoi network is determined numerically, with the result p(c)=0.714 10 +/- 0.000 02, using Monte Carlo simulation on periodic systems of up to 40 000 sites. The result is very close to the recent theoretical estimate p(c)approximate to 0.7151 of Neher For the bond threshold on the Voronoi network, we find p(c)=0.666 931 +/- 0.000 005 implying that, for its dual, the Delaunay triangulation p(c)=0.333 069 +/- 0.000 005. These results rule out the conjecture by Hsu and Huang that the bond thresholds are 2/3 and 1/3, respectively, but support the conjecture of Wierman that, for fully triangulated lattices other than the regular triangular lattice, the bond threshold is less than 2 sin pi/18 approximate to 0.3473.
引用
收藏
页数:9
相关论文
共 70 条
[21]  
Finch Steven R, 2003, MATH CONSTANTS
[22]   Molecular size distribution in three dimensional polymers. I. Gelation [J].
Flory, PJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1941, 63 :3083-3090
[23]   A SWEEPLINE ALGORITHM FOR VORONOI DIAGRAMS [J].
FORTUNE, S .
ALGORITHMICA, 1987, 2 (02) :153-174
[24]   THE VOLUME OF ATOMS ON THE PROTEIN SURFACE - CALCULATED FROM SIMULATION, USING VORONOI POLYHEDRA [J].
GERSTEIN, M ;
TSAI, J ;
LEVITT, M .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 249 (05) :955-966
[25]   RANDOM DISTRIBUTION OF LINES IN A PLANE [J].
GOUDSMIT, S .
REVIEWS OF MODERN PHYSICS, 1945, 17 (2-3) :321-322
[26]   Critical percolation in high dimensions [J].
Grassberger, P .
PHYSICAL REVIEW E, 2003, 67 (03) :4
[27]  
Grunbaum B., 1986, Tilings and patterns
[28]   RANDOMIZED INCREMENTAL CONSTRUCTION OF DELAUNAY AND VORONOI DIAGRAMS [J].
GUIBAS, LJ ;
KNUTH, DE ;
SHARIR, M .
ALGORITHMICA, 1992, 7 (04) :381-413
[29]   Statistical properties of planar Voronoi tessellations [J].
Hilhorst, H. J. .
EUROPEAN PHYSICAL JOURNAL B, 2008, 64 (3-4) :437-441
[30]   New Monte Carlo method for planar Poisson-Voronoi cells [J].
Hilhorst, H. J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (11) :2615-2638