Putative subunits of the maize origin of replication recognition complex ZmORC1-ZmORC5

被引:18
作者
Witmer, XH
Alvarez-Venegas, R
San-Miguel, P
Danilevskaya, O
Avramova, Z [1 ]
机构
[1] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA
[2] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
[3] Purdue Genom Ctr, W Lafayette, IN 47907 USA
[4] Pioneer HiBread Int, Ames, IA 50011 USA
关键词
D O I
10.1093/nar/gkg138
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The finding in animal species of complexes homologous to the products of six Saccharomyces cerevisiae genes, (o) under bar rigin of replication (r) under bar ecognition (c) under bar omplex (ORC), has suggested that ORC-related mechanisms have been conserved in all eukaryotes. In plants, however, the only cloned putative homologs of ORC subunits are the Arabidopsis ORC2 and the rice ORC1. Homologs of other subunits of plant origin have not been cloned and characterized. A striking observation was the absence from the Arabidopsis genome of an obvious candidate gene-homolog of ORC4. This fact raised compelling questions of whether plants, in general, and Arabidopsis, in particular, may have lost the ORC4 gene, whether ORC-homologous subunits function within a complex in plants, whether an ORC complex may form and function without an ORC4 subunit, whether a functional (but not sequence) protein homolog may have taken up the role of ORC4 in Arabidopsis, and whether lack of ORC4 is a plant feature, in general. Here, we report the first cloned and molecularly characterized five genes coding for the maize putative homologs of ORC subunits ZmORC1, ZmORC2, ZmORC3, ZmORC4 and ZmORC5. Their expression profiles in tissues with different cell-dividing activities are compatible with a role in DNA replication. Based on the potential of ORC-homologous maize proteins to bind each other in yeast, we propose a model for their possible assembly within a maize ORC. The isolation and molecular characterization of an ORC4-homologous gene from maize argues that, in its evolution, Arabidopsis may have lost the homologous ORC4 gene.
引用
收藏
页码:619 / 628
页数:10
相关论文
共 49 条
[1]   THE PHD FINGER - IMPLICATIONS FOR CHROMATIN-MEDIATED TRANSCRIPTIONAL REGULATION [J].
AASLAND, R ;
GIBSON, TJ ;
STEWART, AF .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (02) :56-59
[2]   Matrix attachment regions and structural colinearity in the genomes of two grass species [J].
Avramova, Z ;
Tikhonov, A ;
Chen, MS ;
Bennetzen, JL .
NUCLEIC ACIDS RESEARCH, 1998, 26 (03) :761-767
[3]   Structure of the chromatin binding (chromo) domain from mouse modifier protein 1 [J].
Ball, LJ ;
Murzina, NV ;
Broadhurst, RW ;
Raine, ARC ;
Archer, SJ ;
Stott, FJ ;
Murzin, AG ;
Singh, PB ;
Domaille, PJ ;
Laue, ED .
EMBO JOURNAL, 1997, 16 (09) :2473-2481
[4]   YEAST ORIGIN RECOGNITION COMPLEX FUNCTIONS IN TRANSCRIPTION SILENCING AND DNA-REPLICATION [J].
BELL, SP ;
KOBAYASHI, R ;
STILLMAN, B .
SCIENCE, 1993, 262 (5141) :1844-1849
[5]   THE MULTIDOMAIN STRUCTURE OF ORC1P REVEALS SIMILARITY TO REGULATORS OF DNA-REPLICATION AND TRANSCRIPTIONAL SILENCING [J].
BELL, SP ;
MITCHELL, J ;
LEBER, J ;
KOBAYASHI, R ;
STILLMAN, B .
CELL, 1995, 83 (04) :563-568
[6]   ATP-DEPENDENT RECOGNITION OF EUKARYOTIC ORIGINS OF DNA-REPLICATION BY A MULTIPROTEIN COMPLEX [J].
BELL, SP ;
STILLMAN, B .
NATURE, 1992, 357 (6374) :128-134
[7]   Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1 [J].
Burke, TW ;
Cook, JG ;
Asano, M ;
Nevins, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (18) :15397-15408
[8]   Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives [J].
Callebaut, I ;
Labesse, G ;
Durand, P ;
Poupon, A ;
Canard, L ;
Chomilier, J ;
Henrissat, B ;
Mornon, JP .
CELLULAR AND MOLECULAR LIFE SCIENCES, 1997, 53 (08) :621-645
[9]   Identification of a novel 81-kDa component of the Xenopus origin recognition complex [J].
Carpenter, PB ;
Dunphy, WG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (38) :24891-24897
[10]   Role for a Xenopus Orc2-related protein in controlling DNA replication [J].
Carpenter, PB ;
Mueller, PR ;
Dunphy, WG .
NATURE, 1996, 379 (6563) :357-360