Asymptotic analysis of a random walk with a history-dependent step length

被引:6
作者
Dickman, R
Araujo, FF
ben-Avraham, D
机构
[1] Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil
[2] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA
[3] Clarkson Univ, Ctr Stat Phys, CISP, Potsdam, NY 13699 USA
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.66.051102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study an unbiased, discrete-time random walk on the nonnegative integers, with the origin absorbing, and a history-dependent step length. Letting y denote the maximum distance the walker has ever been from the origin, steps that do not change y have length v, while those that increase y (taking the walker to a site that has never been visited) have length n. The process serves as a simplified model of spreading in systems with an infinite number of absorbing configurations. Asymptotic analysis of the probability generating function shows that, for large t, the survival probability decays as S(t)similar tot(-delta), with delta=v/2n. Our expression for the decay exponent is in agreement with the results obtained via numerical iteration of the transition matrix.
引用
收藏
页码:7 / 051102
页数:7
相关论文
共 12 条
[1]  
Barber M., 1970, RANDOM RESTRICTED WA
[2]   Breakdown of universality in transitions to spatiotemporal chaos [J].
Bohr, T ;
van Hecke, M ;
Mikkelsen, R ;
Ipsen, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5482-5485
[3]   SURFACE PHASE-TRANSITIONS IN POLYMER SYSTEMS [J].
DEBELL, K ;
LOOKMAN, T .
REVIEWS OF MODERN PHYSICS, 1993, 65 (01) :87-113
[4]   Continuously variable survival exponent for random walks with movable partial reflectors [J].
Dickman, R ;
ben-Avraham, D .
PHYSICAL REVIEW E, 2001, 64 (02) :4-201024
[5]   Spreading in media with long-time memory [J].
Grassberger, P ;
Chate, H ;
Rousseau, G .
PHYSICAL REVIEW E, 1997, 55 (03) :2488-2495
[6]   CRITICAL-BEHAVIOR OF THE PAIR CONTACT PROCESS [J].
JENSEN, I .
PHYSICAL REVIEW LETTERS, 1993, 70 (10) :1465-1468
[7]   NONEQUILIBRIUM PHASE-TRANSITIONS IN SYSTEMS WITH INFINITELY MANY ABSORBING STATES [J].
JENSEN, I ;
DICKMAN, R .
PHYSICAL REVIEW E, 1993, 48 (03) :1710-1725
[8]  
Marro J., 1999, NONEQUILIBRIUM PHASE
[9]   RANDOM WALKS ON LATTICES .2. [J].
MONTROLL, EW ;
WEISS, GH .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (02) :167-+
[10]   Phase structure of systems with infinite numbers of absorbing states [J].
Munoz, MA ;
Grinstein, G ;
Dickman, R .
JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (3-4) :541-569