Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights

被引:839
作者
Gauthier, Magali [1 ,2 ]
Carney, Thomas J. [2 ,3 ]
Grimaud, Alexis [1 ,2 ]
Giordano, Livia [1 ,2 ,5 ]
Pour, Nir [1 ,2 ]
Chang, Hao-Hsun [1 ,2 ]
Fenning, David P. [2 ,4 ]
Lux, Simon F. [6 ]
Paschos, Odysseas [7 ]
Bauer, Christoph [7 ]
Magia, Filippo [7 ]
Lupart, Saskia [7 ]
Lamp, Peter [7 ]
Shao-Horn, Yang [1 ,2 ,3 ,4 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[5] Univ Milano Bicocca, Dipartimento Sci Mat, I-20125 Milan, Italy
[6] BMW Grp Technol Off USA, Mountain View, CA 94043 USA
[7] BMW Grp, D-80778 Munich, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2015年 / 6卷 / 22期
关键词
SURFACE-FILM FORMATION; X-RAY-ABSORPTION; ELECTROCHEMICAL LITHIUM INTERCALATION; TEMPERATURE CYCLE PERFORMANCE; ORIENTED PYROLYTIC-GRAPHITE; LICOO2 CATHODE MATERIAL; AC-IMPEDANCE ANALYSIS; SOLID-ELECTROLYTE; ETHYLENE CARBONATE; ELECTRODE/ELECTROLYTE INTERFACE;
D O I
10.1021/acs.jpclett.5b01727
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi(2-x)MnO(3)center dot(1-y)Li1-xMO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties.
引用
收藏
页码:4653 / 4672
页数:20
相关论文
共 227 条
  • [41] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946
  • [42] Predicting the stability of aprotic solvents in Li-air batteries: pKa calculations of aliphatic C-H acids in dimethyl sulfoxide
    Bryantsev, Vyacheslav S.
    [J]. CHEMICAL PHYSICS LETTERS, 2013, 558 : 42 - 47
  • [43] Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li-Air Batteries
    Bryantsev, Vyacheslav S.
    Faglioni, Francesco
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (26) : 7128 - 7138
  • [44] Predicting Solvent Stability in Aprotic Electrolyte Li-Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O2•-)
    Bryantsev, Vyacheslav S.
    Giordani, Vincent
    Walker, Wesley
    Blanco, Mario
    Zecevic, Strahinja
    Sasaki, Kenji
    Uddin, Jasim
    Addison, Dan
    Chase, Gregory V.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (44) : 12399 - 12409
  • [45] Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes
    Bryantsev, Vyacheslav S.
    Blanco, Mario
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (05): : 379 - 383
  • [46] Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2
    Carroll, Kyler J.
    Qian, Danna
    Fell, Chris
    Calvin, Scott
    Veith, Gabriel M.
    Chi, Miaofang
    Baggetto, Loic
    Meng, Ying Shirley
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (26) : 11128 - 11138
  • [47] Differential Electrochemical Mass Spectrometry Study of the Interface of xLi2MnO3•(1-x)LiMO2 (M = Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries
    Castel, Elias
    Berg, Erik J.
    El Kazzi, Mario
    Novak, Petr
    Villevieille, Claire
    [J]. CHEMISTRY OF MATERIALS, 2014, 26 (17) : 5051 - 5057
  • [48] Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes
    Chan, Candace K.
    Ruffo, Riccardo
    Hong, Seung Sae
    Cui, Yi
    [J]. JOURNAL OF POWER SOURCES, 2009, 189 (02) : 1132 - 1140
  • [49] Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries
    Chang, Hao-Hsun
    Chang, Chun-Chih
    Su, Ching-Yi
    Wu, Hung-Chun
    Yang, Mo-Hua
    Wu, Nae-Lih
    [J]. JOURNAL OF POWER SOURCES, 2008, 185 (01) : 466 - 472
  • [50] Enhanced high-temperature cycle performance of LiFePO4/carbon batteries by an ion-sieving metal coating on negative electrode
    Chang, Hao-Hsun
    Wu, Hung-Chun
    Wu, Nae-Lih
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) : 1823 - 1826