PROXIMO - a new docking algorithm to model protein complexes using data from radical probe mass spectrometry (RP-MS)

被引:26
作者
Gerega, Sebastien K. [1 ]
Downard, Kevin M. [1 ]
机构
[1] Univ Sydney, Sch Mol & Microbial Biosci, Sydney, NSW 2006, Australia
关键词
D O I
10.1093/bioinformatics/btl178
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The design and implementation of a new algorithm, known as PROXIMO for protein oxidation interface modeller, is described to predict the structure of protein complexes using data generated in radical probe mass spectrometry (RP-MS) experiments. Photochemical radiolysis and discharge sources can be used to effect RP-MS in which hydroxyl radicals are formed directly from the bulk solvent on millisecond timescales and react with surface accessible residues in footprinting-like experiments. The algorithm utilizes a geometric surface fitting routine to predict likely structures for protein complexes. These structures are scored based on a correlation between the measured solvent accessibility of oxidizable residue side chains and oxidation shielding data obtained by RP-MS. The algorithm has been implemented to predict structures for the ribonuclease S-protein-peptide and calmodulin-melittin complexes using RP-MS data generated in this laboratory. The former is in close agreement with the high-resolution experimental structure available.
引用
收藏
页码:1702 / 1709
页数:8
相关论文
共 42 条
[1]   3-DIMENSIONAL STRUCTURE OF CALMODULIN [J].
BABU, YS ;
SACK, JS ;
GREENHOUGH, TJ ;
BUGG, CE ;
MEANS, AR ;
COOK, WJ .
NATURE, 1985, 315 (6014) :37-40
[2]   Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping -: A novel approach to assess intermolecular protein contacts [J].
Bennett, KL ;
Kussmann, M ;
Björk, P ;
Godzwon, M ;
Mikkelsen, M ;
Sorensen, P ;
Roepstorff, P .
PROTEIN SCIENCE, 2000, 9 (08) :1503-1518
[3]   The Protein Data Bank and the challenge of structural genomics [J].
Berman, HM ;
Bhat, TN ;
Bourne, PE ;
Feng, ZK ;
Gilliland, G ;
Weissig, H ;
Westbrook, J .
NATURE STRUCTURAL BIOLOGY, 2000, 7 (Suppl 11) :957-959
[4]   Native-state hydrogen-exchange studies of a fragment complex can provide structural information about the isolated fragments [J].
Chakshusmathi, G ;
Ratnaparkhi, GS ;
Madhu, PK ;
Varadarajan, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (14) :7899-7904
[5]   CALMODULIN STRUCTURE REFINED AT 1.7 ANGSTROM RESOLUTION [J].
CHATTOPADHYAYA, R ;
MEADOR, WE ;
MEANS, AR ;
QUIOCHO, FA .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 228 (04) :1177-1192
[6]   ZDOCK: An initial-stage protein-docking algorithm [J].
Chen, R ;
Li, L ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 52 (01) :80-87
[7]   ANALYTICAL MOLECULAR-SURFACE CALCULATION [J].
CONNOLLY, ML .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1983, 16 (OCT) :548-558
[8]   SOLVENT-ACCESSIBLE SURFACES OF PROTEINS AND NUCLEIC-ACIDS [J].
CONNOLLY, ML .
SCIENCE, 1983, 221 (4612) :709-713
[9]   MOLECULAR AND STRUCTURAL BASIS OF TARGET RECOGNITION BY CALMODULIN [J].
CRIVICI, A ;
IKURA, M .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1995, 24 :85-116
[10]   HADDOCK: A protein-protein docking approach based on biochemical or biophysical information [J].
Dominguez, C ;
Boelens, R ;
Bonvin, AMJJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (07) :1731-1737