Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor

被引:127
作者
Keffer, JE [1 ]
Kleinheinz, GT [1 ]
机构
[1] Univ Wisconsin, Dept Biol & Microbiol, Oshkosh, WI 54901 USA
关键词
carbon dioxide; photobioreactor; greenhouse gas; Chlorella vulgaris;
D O I
10.1038/sj.jim.7000313
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Carbon dioxide (CO2) is a colorless gas that exists at a concentration of approximately 330 ppm in the atmosphere and is released in great quantities when fossil fuels are burned. The current flux of carbon out of fossil fuels is about 600 times greater than that into fossil fuels. With increased concerns about global warming and greenhouse gas emissions, there have been several approaches proposed for managing the levels Of CO2 emitted into the atmosphere. One of the most understudied methods for CO2 Mitigation is the use of biological processes in engineered systems such as photobioreactors. This research project describes the effectiveness of Chlorella vulgaris, used in a photobioreactor with a very short gas residence time, in sequestering CO2 from an elevated CO2 airstream. We evaluated a flow-through photobioreactor's operational parameters, as well as the growth characteristics of the C. vulgaris inoculum when exposed to an airstream with over 1850 ppm CO2. When using dry weight, chlorophyll, and direct microscopic measurements, it was apparent that the photobioreactor's algal inoculum responded well to the elevated CO2 levels and there was no build-up of CO2 or carbonic acid in the photobioreactor. The photobioreactor, with a gas residence time of approximately 2 s, was able to remove up to 74% of the CO2 in the airstream to ambient levels. This corresponded to a 63.9-g/m(3)/h bulk removal for the experimental photobioreactor. Consequently, this photobioreactor shows that biological processes may have some promise for treating point source emissions Of CO2 and deserve further study.
引用
收藏
页码:275 / 280
页数:6
相关论文
共 21 条
[1]   Importance of stirring in the development of an iron-fertilized phytoplankton bloom [J].
Abraham, ER ;
Law, CS ;
Boyd, PW ;
Lavender, SJ ;
Maldonado, MT ;
Bowie, AR .
NATURE, 2000, 407 (6805) :727-730
[2]  
[Anonymous], 1998, STAND METH EX WAT WA, V20th
[3]   Algae burgers for a hungry world? The rise and fall of Chlorella cuisine [J].
Belasco, W .
TECHNOLOGY AND CULTURE, 1997, 38 (03) :608-634
[4]   A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization [J].
Boyd, PW ;
Watson, AJ ;
Law, CS ;
Abraham, ER ;
Trull, T ;
Murdoch, R ;
Bakker, DCE ;
Bowie, AR ;
Buesseler, KO ;
Chang, H ;
Charette, M ;
Croot, P ;
Downing, K ;
Frew, R ;
Gall, M ;
Hadfield, M ;
Hall, J ;
Harvey, M ;
Jameson, G ;
LaRoche, J ;
Liddicoat, M ;
Ling, R ;
Maldonado, MT ;
McKay, RM ;
Nodder, S ;
Pickmere, S ;
Pridmore, R ;
Rintoul, S ;
Safi, K ;
Sutton, P ;
Strzepek, R ;
Tanneberger, K ;
Turner, S ;
Waite, A ;
Zeldis, J .
NATURE, 2000, 407 (6805) :695-702
[5]   Uptake of carbon dioxide from flue gas by microalgae [J].
Brown, LM .
ENERGY CONVERSION AND MANAGEMENT, 1996, 37 (6-8) :1363-1367
[6]  
Department of Energy, 1999, CARB SEQ STAT SCI
[7]  
GRAAN T, 1984, J BIOL CHEM, V259, P4003
[8]  
Halmann Martin M., 1993, Chemical Fixation of Carbon Dioxide Methods Recycling: Methods of Recycling CO>2 into Useful Products
[9]   CARBON-DIOXIDE FIXATION BY MICROALGAL PHOTOSYNTHESIS USING ACTUAL FLUE-GAS FROM A POWER-PLANT [J].
HAMASAKI, A ;
SHIOJI, N ;
IKUTA, Y ;
HUKUDA, Y ;
MAKITA, T ;
HIRAYAMA, K ;
MATUZAKI, H ;
TUKAMOTO, T ;
SASAKI, S .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1994, 45-6 :799-809
[10]  
Lembi CA., 1988, ALGAE HUMAN AFFAIRS