A unified approach for Uzawa algorithms

被引:69
作者
Bacuta, Constantin [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
Uzawa algorithms; saddle point system; multilevel methods; augmented Lagrangian method; Stokes problem;
D O I
10.1137/050630714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a unified approach in analyzing Uzawa iterative algorithms for saddle point problems. We study the classical Uzawa method, the augmented Lagrangian method, and two versions of inexact Uzawa algorithms. The target application is the Stokes system, but other saddle point systems, e.g., arising from mortar methods or Lagrange multipliers methods, can benefit from our study. We prove convergence of Uzawa algorithms and find optimal rates of convergence in an abstract setting on finite- or in finite-dimensional Hilbert spaces. The results can be used to design multilevel or adaptive algorithms for solving saddle point problems. The discrete spaces do not have to satisfy the LBB stability condition.
引用
收藏
页码:2633 / 2649
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1958, STUD LINEAR NONLINEA
[2]  
[Anonymous], 1983, STUD MATH APPL
[3]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[4]   Using finite element tools in proving shift theorems for elliptic boundary value problems [J].
Bacuta, C ;
Bramble, JH ;
Pasciak, JE .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2003, 10 (1-2) :33-64
[5]   An adaptive uzawa FEM for the stokes problem:: Convergence without the inf-sup condition [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) :1207-1229
[6]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[7]   Analysis of the inexact Uzawa algorithm for saddle point problems [J].
Bramble, JH ;
Pasciak, JE ;
Vassilev, AT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1072-1092
[8]  
Bramble JH, 2000, MATH COMPUT, V69, P463, DOI 10.1090/S0025-5718-99-01106-0
[9]  
Bramble JH, 2000, HDBK NUM AN, V7, P173
[10]  
Brenner S. C., 2007, Texts Appl. Math., V15