Exploitation of binding energy for catalysis and design

被引:72
作者
Thyme, Summer B. [1 ,3 ]
Jarjour, Jordan [2 ,5 ]
Takeuchi, Ryo [6 ]
Havranek, James J. [7 ]
Ashworth, Justin [1 ,3 ]
Scharenberg, Andrew M. [2 ,5 ]
Stoddard, Barry L. [3 ,6 ]
Baker, David [1 ,3 ,4 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Dept Immunol, Seattle, WA 98195 USA
[3] Univ Washington, Grad Program Biomol Struct & Design, Seattle, WA 98195 USA
[4] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
[5] Seattle Childrens Hosp Res Inst, Seattle, WA 98177 USA
[6] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA
[7] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
HOMING ENDONUCLEASE; PROTEIN; DNA; MUTAGENESIS; SPECIFICITY; PREDICTION;
D O I
10.1038/nature08508
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Enzymes use substrate-binding energy both to promote ground-state association and to stabilize the reaction transition state selectively1. The monomeric homing endonuclease I-AniI cleaves with high sequence specificity in the centre of a 20-base-pair ( bp) DNA target site, with the amino (N)-terminal domain of the enzyme making extensive binding interactions with the left (-) side of the target site and the similarly structured carboxy (C)-terminal domain interacting with the right (+) side(2). Here we show that, despite the approximate twofold symmetry of the enzyme-DNA complex, there is almost complete segregation of interactions responsible for substrate binding to the (-) side of the interface and interactions responsible for transition-state stabilization to the (+) side. Although single base-pair substitutions throughout the entire DNA target site reduce catalytic efficiency, mutations in the (-) DNA half-site almost exclusively increase the dissociation constant (K-D) and the Michaelis constant under single-turnover conditions (K-M*), and those in the (+) half-site primarily decrease the turnover number (k(cat)*). The reduction of activity produced by mutations on the (-) side, but not mutations on the (+) side, can be suppressed by tethering the substrate to the endonuclease displayed on the surface of yeast. This dramatic asymmetry in the use of enzyme-substrate binding energy for catalysis has direct relevance to the redesign of endonucleases to cleave genomic target sites for gene therapy and other applications. Computationally redesigned enzymes that achieve new specificities on the (-) side do so by modulating K-M*, whereas redesigns with altered specificities on the (+) side modulate k(cat)*. Our results illustrate how classical enzymology and modern protein design can each inform the other.
引用
收藏
页码:1300 / U142
页数:7
相关论文
共 28 条
[1]   Computational redesign of endonuclease DNA binding and cleavage specificity [J].
Ashworth, Justin ;
Havranek, James J. ;
Duarte, Carlos M. ;
Sussman, Django ;
Monnat, Raymond J., Jr. ;
Stoddard, Barry L. ;
Baker, David .
NATURE, 2006, 441 (7093) :656-659
[2]   Assessment of the optimization of affinity and specificity at proteinDNA interfaces [J].
Ashworth, Justin ;
Baker, David .
NUCLEIC ACIDS RESEARCH, 2009, 37 (10)
[3]   A perspective on enzyme catalysis [J].
Benkovic, SJ ;
Hammes-Schiffer, S .
SCIENCE, 2003, 301 (5637) :1196-1202
[4]   Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor [J].
Bolduc, JM ;
Spiegel, PC ;
Chatterjee, P ;
Brady, KL ;
Downing, ME ;
Caprara, MG ;
Waring, RB ;
Stoddard, BL .
GENES & DEVELOPMENT, 2003, 17 (23) :2875-2888
[5]   Cyclic coordinate descent: A robotics algorithm for protein loop closure [J].
Canutescu, AA ;
Dunbrack, RL .
PROTEIN SCIENCE, 2003, 12 (05) :963-972
[6]   Engineering proteins that bind, move, make and break DNA [J].
Collins, CH ;
Yokobayashi, Y ;
Umeno, D ;
Arnold, FH .
CURRENT OPINION IN BIOTECHNOLOGY, 2003, 14 (04) :371-378
[7]   Structure prediction for CABP7 targets using extensive all-atom refinement with Rosetta@home [J].
Das, Rhiju ;
Bin Qian ;
Raman, Srivatsan ;
Vernon, Robert ;
Thompson, James ;
Bradley, Philip ;
Khare, Sagar ;
Tyka, Michael D. ;
Bhat, Divya ;
Chivian, Dylan ;
Kim, David E. ;
Sheffler, William H. ;
Malmstrom, Lars ;
Wollacott, Andrew M. ;
Wang, Chu ;
Andre, Ingemar ;
Baker, David .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 69 :118-128
[8]  
Fersht A., 1998, STRUCTURE MECH PROTE
[10]   Yeast surface display for protein engineering and characterization [J].
Gai, S. Annie ;
Wittrup, K. Dane .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2007, 17 (04) :467-473