Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages

被引:1290
作者
Ishii, T
Itoh, K
Takahashi, S
Sato, H
Yanagawa, T
Katoh, Y
Bannai, S
Yamamoto, M
机构
[1] Univ Tsukuba, Ctr Tsukuba Adv Res Alliance, Tsukuba, Ibaraki 3058577, Japan
[2] Univ Tsukuba, Inst Basic Med Sci, Tsukuba, Ibaraki 3058577, Japan
关键词
D O I
10.1074/jbc.275.21.16023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electrophiles and reactive oxygen species have been implicated in the pathogenesis of many diseases. Transcription factor Nrf2 was recently identified as a general regulator of one defense mechanism against such havoc. Nrf2 regulates the inducible expression of a group of detoxication enzymes, such as glutathione S-transferase and NAD(P)H:quinone oxidoreductase, via antioxidant response elements. Using peritoneal macrophages from Nrf2-deficient mice, we show here that Nrf2 also controls the expression of a group of electrophile and oxidative stress-inducible proteins and activities, which includes heme oxygenase-l, A170, peroxiredoxin MSP23, and cystine membrane transport (system x(c)(-)) activity. The response to electrophilic and reactive oxygen species-producing agents was profoundly impaired in Nrf2-deficient cells. The lack of induction of system x(c)(-) activity resulted in the minimum level of intracellular glutathione, and Nrf2-deficient cells were more sensitive to toxic electrophiles. Several stress agents induced the DNA binding activity of Nrf2 in the nucleus without increasing its mRNA level. Thus Nrf2 regulates a wide-ranging metabolic response to oxidative stress.
引用
收藏
页码:16023 / 16029
页数:7
相关论文
共 43 条