The multiple-try method and local optimization in metropolis sampling

被引:227
作者
Liu, JS [1 ]
Liang, FM
Wong, WH
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
关键词
adaptive direction sampling; conjugate gradient; damped sinusoidal; Gibbs sampling; griddy Gibbs sampler; hit-and-run algorithm; Markov chain Monte Carlo; metropolis algorithm; mixture model; orientational bias Monte Carlo;
D O I
10.2307/2669532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article describes a new Metropolis-like transition rule, the multiple-try Metropolis, for Markov chain Monte Carlo (MCMC) simulations. By using this transition rule together with adaptive direction sampling. we propose a novel method for incorporating local optimization steps into a MCMC sampler in continuous state-space. Numerical studies show that the new method performs significantly better than the traditional Metropolis-Hastings (M-H) sampler. With minor tailoring in using the rule, the multiple-try method can also be exploited to achieve the effect of a griddy Gibbs sampler without having to bear with griddy approximations, and the effect of a hit-and-run algorithm without having to figure out the required conditional distribution in a random direction.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 22 条
[11]   ADAPTIVE DIRECTION SAMPLING [J].
GILKS, WR ;
ROBERTS, GO ;
GEORGE, EI .
STATISTICIAN, 1994, 43 (01) :179-189
[12]   Adaptive Markov chain Monte Carlo through regeneration [J].
Gilks, WR ;
Roberts, GO ;
Suhu, SK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) :1045-1054
[13]   MULTIGRID MONTE-CARLO METHOD - CONCEPTUAL FOUNDATIONS [J].
GOODMAN, J ;
SOKAL, AD .
PHYSICAL REVIEW D, 1989, 40 (06) :2035-2071
[14]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[15]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[16]   A CAVITY-BIASED (T,V,MU) MONTE-CARLO METHOD FOR THE COMPUTER-SIMULATION OF FLUIDS [J].
MEZEI, M .
MOLECULAR PHYSICS, 1980, 40 (04) :901-906
[17]  
Press W. H., 1996, NUMERICAL RECIPES C
[18]   FACILITATING THE GIBBS SAMPLER - THE GIBBS STOPPER AND THE GRIDDY-GIBBS SAMPLER [J].
RITTER, C ;
TANNER, MA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (419) :861-868
[19]   CONVERGENCE OF ADAPTIVE DIRECTION SAMPLING [J].
ROBERTS, GO ;
GILKS, WR .
JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 49 (02) :287-298
[20]   Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms [J].
Roberts, GO ;
Tweedie, RL .
BIOMETRIKA, 1996, 83 (01) :95-110