Quantum dynamical phase transition in a system with many-body interactions

被引:23
作者
Danieli, E. P. [1 ]
Alvarez, G. A. [1 ]
Levstein, P. R. [1 ]
Pastawski, H. M. [1 ]
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina
关键词
decoherence; open systems; Keldysh formalism; Quantum Zeno effect;
D O I
10.1016/j.ssc.2006.11.001
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Recent experiments, [G.A. Alvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507], have reported the observation of a quantum dynamical phase transition in the dynamics of a spin swapping gate. In order to explain this result from a microscopic perspective, we introduce a Hamiltonian model of a two level system with many-body interactions with an environment whose excitation dynamics is fully solved within the Keldysh formalism. If a particle starts in one of the states of the isolated system, the return probability oscillates with the Rabi frequency omega(0). For weak interactions with the environment 1/tau(SE) < 2 omega(0), we find a slower oscillation whose amplitude decays with a rate 1/tau(phi)= 1/(2 tau(SE)). However, beyond a finite critical interaction with the environment, 1/tau(SE) > 2 omega(0), the decay rate becomes 1/tau(phi) proportional to omega(2)(0)tau(SE). The oscillation period diverges showing a quantum dynamical phase transition to a Quantum Zeno phase consistent with the experimental observations. (c) 2006 Published by Elsevier Ltd.
引用
收藏
页码:422 / 426
页数:5
相关论文
共 18 条
[1]   Environmentally induced quantum dynamical phase transition in the spin swapping operation [J].
Alvarez, Gonzalo A. ;
Danieli, Ernesto P. ;
Levstein, Patricia R. ;
Pastawski, Horacio M. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (19)
[2]   DYNAMICS OF THE 2-STATE SYSTEM WITH OHMIC DISSIPATION [J].
CHAKRAVARTY, S ;
LEGGETT, AJ .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :5-8
[3]   Coherent-incoherent transition in the sub-Ohmic spin-boson model [J].
Chin, A ;
Turlakov, M .
PHYSICAL REVIEW B, 2006, 73 (07)
[4]   QUANTUM-THEORY OF NONEQUILIBRIUM PROCESSES .1. [J].
DANIELEWICZ, P .
ANNALS OF PHYSICS, 1984, 152 (02) :239-304
[5]   Non-Markovian decay beyond the Fermi Golden Rule: Survival collapse of the polarization in spin chains [J].
Fiori, ER ;
Pastawski, HM .
CHEMICAL PHYSICS LETTERS, 2006, 420 (1-3) :35-41
[6]   Environment-independent decoherence rate in classically chaotic systems [J].
Jalabert, RA ;
Pastawski, HM .
PHYSICAL REVIEW LETTERS, 2001, 86 (12) :2490-2493
[7]   TUNING THE THROUGH-BOND INTERACTION IN A 2-CENTER PROBLEM [J].
LEVSTEIN, PR ;
PASTAWSKI, HM ;
DAMATO, JL .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (07) :1781-1794
[8]  
MISRA B, 1977, J MATH PHYS, V18, P756, DOI 10.1063/1.523304
[9]   DYNAMICAL QUANTUM ZENO EFFECT [J].
PASCAZIO, S ;
NAMIKI, M .
PHYSICAL REVIEW A, 1994, 50 (06) :4582-4592
[10]   CLASSICAL AND QUANTUM TRANSPORT FROM GENERALIZED LANDAUER-BUTTIKER EQUATIONS [J].
PASTAWSKI, HM .
PHYSICAL REVIEW B, 1991, 44 (12) :6329-6339